OOD-CV Challenge Report

October 10, 2022

1 Team details

e Challenge track: Detection Track
e Team name: detectors_218
e Team leader name: Zining Chen

e Team leader address, phone number, and email:
Address: Beijing University of Posts and Telecommunications, Beijing,
China
Phone number: +86-15643117621
Email: chenzn@bupt.edu.cn

e Rest of the team members: Tianyi Wang
e Team website URL: None
o Affiliation: Beijing University of Posts and Telecommunications

e User names on the OOD-CV Codalab competitions: detectors 218



e Link to the codes of the solution(s):
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Contribution details

e Title of the contribution:
OCP: An Effective Data Augmentation Method with Two-stage Frame-
work for Out-of-Distribution Object Detection

e General method description:

In this paper, we propose a simple and effective two-stage framework
with Object-based CopyPaste (OCP) for out-of-distribution object de-
tection. Also, we design Nuisance-Specific Weighted Boxes Fusion (NS-
WBF), a rank-based post-processing method. Firstly, OOD-CV chal-
lenge aims to train a well-generalized model on both train images and
unknown-distributed target nuisances, where occlusion accounts for a
fairly large proportion. Thus we propose OCP to tackle occlusion as
the key challenge. Secondly, as test images in phase 2 can be leveraged
to finetune models in phase 1, we propose an universal two-stage frame-
work for out-of-distribution (OOD) object detection. We train the ob-
ject detector using images with ground truth bounding boxes, where
only basic data augmentation methods are used to increase the diver-
sity of data. Then we finetune models using high-quality pseudo-labels
of test images in phase 2 with OCP data augmentation method. Fi-
nally, we design NS-WBF to fuse diverse models on different nuisances
according to their ranks. Under this circumstances, our framework can
successfully handle all nuisances, especially occlusion, and fully uti-
lize domain information to increase the robustness and generalization
ability of models.

e Description of the particularities of the solutions deployed for each of
the tracks:
Our solution mainly consists of three particularities on object detection
track.
1. Two-stage Framework
First, input independent and identically distributed (IID) images
and apply basic data augmentation methods, including Resize, Flip,
Mixup [23], Cutout [5] and PhotoMetricDistortion (PMD), to get



IID-Aug images for stage-1 training. Second, inference OOD images
of phase 2 to generate high-quality pseudo-labels based on the trained
detectors, and different filter mechanisms, confidence score or Intersec-
tion of Union (IoU) of bounding boxes, are utilized to filter inaccurate
and redundant boxes. Finally we adopt the former with the threshold
of 0.7 based on quantitative criterion, which is the estimation on the
number of bounding boxes. Last, finetune the trained detectors using
dataset-specific augmentation method (OCP for ROBIN dataset [24],
details are demonstrated as follows).

2. Object-based CopyPaste (OCP)

OCP is specifically designed for occluded objects without segmentation
labels, which copy objects by ground truth bounding boxes and paste
them to images is fairly appropriate for a synthetic occlusion-based
dataset. However, diverse hyper-parameters, such as the number of
pasted objects, IoU between pasted objects and objects in current
image and the position of the pasted objects, will affect the represen-
tation learning of models. To reduce the gap between the distribution
of IID and OOD images to the utmost extent, we select one pasted
objects per image, the position of the pasted object is the exact
coordinates of its original image and padding is added if the size of
pasted objects is larger.

As the training process follows a two-stage manner, for better rep-
resentation learning of foreground objects in stage-1, OCP is only
used in stage-2. Specifically, images and ground truth bounding boxes
in stage-2 are test images and pseudo labels generated by stage-1
detectors, respectively. Therefore, copy objects in training images and
paste them on test images can increase the diversity of data and avoid
over-fitting on pseudo labels.

3. Nuisance-Specific Weighted Boxes Fusion (NS-WBF)

NS-WBF is stemmed from Weighted Boxes Fusion (WBF) [18], using
all bounding boxes to get weighted sum coordinates of bounding
boxes. We further design NS-WBF to fuse diverse models on different
nuisances according to their ranks. Detailed algorithm and equation
are demonstrated in Section 4.
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e Representative image / diagram of the method(s):
Please refer to Figure

3 Global Method Description

[* Indicates method used in competition test results.]

e Total method complexity: Details are shown in Table
e Model Parameters: Details are shown in Table [1]

e Run Time: Details are shown in Table [1]
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Figure 1: Our two-stage framework with Object-based CopyPaste
(OCP) for out-of-distribution object detection. It consists of three
stages. @ Stage-1 training: Use IID-Aug images for stage-1 training.
@ Pseudo-labeling Generation: Inference OOD images of phase 2 to
generate high-quality pseudo-labels based on the trained detectors. @ Stage-
2 Fine-tuning: Finetune the trained detectors with OCP augmentation
method.

e Which pre-trained or external methods / models have been used:
Backbone: ResNet-50 [8], ResNet-101 [8], ResNeXt-101-64x4d [21],
ResNest-101 [22], Regnetx-12GF [16]

Neck: Feature Pyramid Network [11] (FPN)
Head: Cascade R-CNN [2], Yolov7 [20], Detectors|15]
Data Augmentations: Flip, Cutout, Mixup, PhotoMetricDistortion

e Training description:

We totally adopt 6 backbones, 1 neck and 3 heads to get final results.
Detailed information is shown in Table 2

Here we expound our original baseline on ResNet-50, FPN and Cascade
R-CNN for stage-1 training, where first we add Deformable Convolu-
tion Network [4] (DCN) structure to keep spatial-invariant. Besides,
we select GIoU Loss [17] for regressing bounding boxes and we adjust
hyper-parameters on IoU threshold in assigner. Furthermore, we adopt
Mixup, Resize, Flip, Cutout and PMD augmentations to increase the
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Model Size FLOPs Parameters Run time

Cascade R-CNN ResNet-50 (500, 375)  72.28G 69.54M 5.4h
Cascade R-CNN ResNet-101 (500, 375)  79.73G 89.23M 7h
Cascade R-CNN ResNeXt-101-64x4d (1333, 800) 492.01G  131.82M 10h
Cascade R-CNN ResNest-101 (1000, 600) 573.24G  95.46M 8.4h
Cascade R-CNN Regnetx-12GF (1333, 800) 413.85G 88.91M 7.8h
Detectors ResNet-101 (500, 375)  78.92G  188.57TM 10h
Yolov7-w6 (640, 640)  102.8G 81.1M 6.4h
Average 258.96G  106.35M 7.86h

Table 1: Detailed information on total method complexity, model parameters
and run time of different models.

diversity of data. Then for stage-2 finetuning, we add OCP augmen-
tation with other structures unchanged. We train stage-1 model using
SGD optimizer with step scheduler, learning rate is initialized to 2e~2
for 72 epochs and scale it by 0.1 after 56 epochs and 64 epochs, weight
decay is le™*. For stage-2, we finetune the trained models for extra
12 epochs, learning rate is 2e~2 and scale it by 0.1 after 8 epochs, and
finally use Stochastic Weight Averaging[9] (SWA) strategy to increase
model generalization. Batch size is 4 or 8 according to input size and
multi-scale training is alternatively applied.

e Testing description:

Test-Time Augmentation (TTA) is applied to enhance images and dif-
ferent TTA combinations are conducted to get the best strategy, includ-
ing flip with probability of 0.5, the same scale in training and PMD.
Besides, we adopt Soft-Non-Maximum-Suppression [1](Soft-NMS) to
remove redundant bounding boxes for single model, which we conduct
ablation studies for an optimal confidence score, 0.005, while 0.05 drops
0.72% and 0.001 performs worse when model fusion strategies are im-
plemented. Lastly, we apply NS-WBF to ensemble models, details are
demonstrated in Section 4.

e Quantitative and qualitative advantages of the proposed solution:
Our solution on object detection track has the following three advan-



Backbone Head Loss Data Augs  Input size

ResNet-50 Cascade R-CNN GloU Basic+OCP  Multi-scale
ResNet-101 ~ Cascade R-CNN  ClIoU [25] Basic+OCP  (1333,800)
ResNet-101 Detectors GloU Basic+OCP  (500,375)
ResNeXt-101  Cascade R-CNN CloU Basic+OCP  (500,375)
Regnetx-12GF  Cascade R-CNN CloU Basic+OCP  (1333,800)
ResNest-101  Cascade R-CNN CloU Basic+OCP  (1333,800)
ELAN-Net Yolov7-w6 SmoothLl  Basic-Yolo  (640,640)

Table 2: Detailed training description of all models. Main differences are
the selection of backbone, head, loss, data augmentations, input size and
other settings remain the same as the above baseline. Basic+OCP denotes
using baseline data augmentation settings for two-stage, while Basic-Yolo de-
notes the original Yolov7-w6 settings. Multi-scale denotes using size between
(1333,400) and (1333,800).

tages. Firstly, universal and generalized. Our two-stage framework is
universal to all OOD situation, which stage-1 increases the ability of
common feature extraction, and pseudo-label usage in stage-2 allows
model to learn out-of-distribution samples with specific-designed OCP
to fit the distribution of test set. Secondly, simple and easy-plugged.
OCP requires no segmentation labels in original CopyPaste [6] aug-
mentation, thus facilitating the use in practical scene. Thirdly, efficient
and memory-saving. OCP consumes no extra computing resources and
two-stage framework is trained without complex modules.

e Results of the comparison to other approaches (if any) :
Firstly, we clarify the development process in phase 1, as illustrated in
Table [3] These methods are added to Baseline step-by-step and signif-
icantly improve performance. Besides, we conduct sufficient ablation
studies to demonstrate the optimal selection of our method by chang-
ing network structure, loss type and data augmentation methods. We
attempt to replace FPN structure into state-of-the-art neck structure,
PAFPN [12] and fusion factor [7], but they decrease the performance
by 1.13% and 0.85%. Smooth-L1 and Label Smoothing CE Loss [19]
still worsen the performance by 1.06% and 2.72%. Random Gray and



Methods mAP

Baseline 57.83%

+Cutout 63.97%

+Mixup 66.54%

+CIoU 67.60%
+Hyper-parameter Adjustment 69.54%
+Two-stage Framework 71.53%
+0CP 72.97%

Table 3: Results of the development of baseline model in phase 1. Baseline
indicates ResNeXt-101 backbone network and + denotes adding the method
based on the previous experimental settings. Hyper-parameter adjustment
includes the number of holes in Cutout and IoU threshold in assigner. OCP in
phase 1 are implemented on original train images and ground truth bounding
boxes.

Gaussian Noise also drops 0.19% and 5.07% respectively.

In order to further prove the effectiveness of OCP, we select state-of-the-
art data augmentation methods on occlusion, Gridmask [3] and Cutout.
The former decreases the mAP of 2.09%, and the latter achieves ap-
proximately the same with OCP, but OCP can be used upon Cutout
for further improvement of 1.44%.

e Novelty of the solution and if it has been previously published:
Firstly, to our best knowledge, the two-stage framework is a novel
method for OOD object detection. If models are trained in an end-
to-end manner, the performance worsens probably because dataset-
specific augmentations may impair representation learning of fore-
ground objects. Thus we point out that training models in stage-1
with basic data augmentations, while finetuning models in stage-2 with
dataset-specific data augmentations will be an universal solution to all
OOD object detection scenarios. Secondly, OCP is designed for occlu-
sion object detection without segmentation labels. During our analysis
of ROBIN dataset, we figure out that occlusion serves as the key chal-
lenge and most of them are synthetic. Thus we copy objects by ground
truth bounding boxes and paste them to other images under several
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conditions as mentioned in Section 2. Lastly, NS-WBF is a creative
post-processing method specifically designed for this challenge, which
weights of different models in different nuisances follow a rank-based
manner. These three novelties are proposed through our analysis on
object detection track of OOD-CV challenge, which are not previously
published.

Ensembles and fusion strategies

Describe in detail the use of ensembles and /or fusion strategies (if any).:
Based on Weighted Boxes Fusion (WBF), we further improve a rank-
based Nuisance-Specific WBF, which diverse models have different
weights. We normalize weight to (0,1] for all models on each nuisance
and weights are calculated as follows,

Sn = [Sn,lu ceny Sn,k]a
O,, = Argsort(S,), (1)
Wyo,,=(+1)/k, i€0,k),i€Z

where S, denotes the mAP scores ny, nuisances, .S, ; denotes the mAP
score of 7;;, model in ny, nuisances, i indicates the current model index
and k indicates the number of models, O,, denotes the indices that sort
Sy On,i denotes the rank of 4y, model in ny, nuisances and W, o, .
denotes the weight of iy, model in ny, nuisances.

What was the benefit over the single method? :

Traditional post-processing methods like NMS [14] and soft-NMS are
applied on single model, which only exclude bounding boxes but have
no effect on improving accuracy. WBF uses all the bounding boxes
with weights to get weighted sum coordinates of bounding boxes, which
can effectively improve precision. NS-WBF' further uses advantages of
diverse models on different nuisances and fuse models on each of the
nuisance to guarantee the best use of single model.

What were the baseline and the fused methods? :

In phase 1, baseline denotes the maximum mAP among all the mod-
els which achieves 72.97% and WBF, NS-WBF respectively achieves
76.63%, 77.65% for fused method. In phase 2, baseline achieves 63.34%
and NS-WBF achieves 65.63%.
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5 Technical details

e Language and implementation details (including platform, memory,
parallelization requirements) :

Ubuntu version Ubuntu 18.04.4
CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
RAM 502GB
GPU Tesla V100 SXM2 32GB(x8)
CUDA version 10.2
Programming language Python3.7
Deep learning framework Pytorch (torch 1.7.0, torchvision 0.8.0)

Table 4: Environments and requirements

e Human effort required for implementation, training and validation?:
Two team members work for around two months to finish the whole
competition, where training and validation consumes a large propor-
tion of time and implementation consumes more time on thinking and
understanding of the challenge.

e Training/testing time? Runtime at test per image :
We train models, except Yolov7-w6, for 72 epochs and finetune for 12
epochs, and Yolov7-w6 for 100 epochs and 12 epochs. Details are shown
in Table [{

e Comment the efficiency of the proposed solution(s)? :
OCP consumes no extra computing resources and two-stage framework
is trained without high-cost modules, thus the efficiency of the overall
solution is fairly high, compared with current state-of-the-art models,
such as CBNetV2 [10] + Swin-Transformer [13].

6 Other details

e General comments and impressions of the OOD-CV challenge. :
OOD-CV challenge successfully promotes the development of out-of-
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Model Training time Testing time (per image)

Cascade R-CNN ResNet-50 5.4h 150ms
Cascade R-CNN ResNet-101 7h 190ms
Cascade R-CNN ResNeXt-101-64x4d 10h 370ms
Cascade R-CNN ResNest-101 8.4h 300ms
Cascade R-CNN Regnetx-12GF 7.8h 120ms
Detectors ResNet-101 10h 200ms
Yolov7-w6 6.4h 12ms

Table 5: Detailed information on training time and testing time per image.

distribution generalization, one of the frontier fields of computer vision.
Meanwhile, as a core downstream task of computer vision, object de-
tection plays a crucial role in practical applications, such as automatic
driving and remote sensing communication. Thus, out-of-distribution
in object detection is a challenging scenario and also the bottleneck
in practical use for long, which worths profound study by worldwide
researchers. Also, we are grateful that the presentation of ROBIN
dataset can accelerate the growth in OOD generalization. 10 tradi-
tional classes from 6 diverse nuisances and an IID subset are really
fantastic works, which model performance can be evaluated on differ-
ent situations. And during phase 1, we find out several misannotations
in ROBIN dataset, which will worsen the performance of models, such
as chair in diningtable are not annotated, resulting in wrong negative
samples for detectors. We hope these reminders can help you revise the
annotations of ROBIN to some extent. Last but not least, we really
appreciate your work not only on source codes and dataset, but also
on evaluation platform, forum and fair rules.

e Other comments: Thank for your quick and clear replies during model
development in phase 1!
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