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Abstract

Previous studies on out-of-distribution generalization re-
lied on the assumption of a static model: once the training
process is complete, model parameters remain fixed at test
time. We challenge this assumption with a self-adaptive ap-
proach for semantic segmentation that adjusts the inference
process to each test sample. Self-adaptation operates on
two levels: (i) It employs a self-supervised loss that cus-
tomizes the parameters of convolutional layers to the input
image; (ii) in Batch Normalization layers, self-adaptation
approximates the mean and the variance of the entire test
distribution, which is assumed unavailable. It achieves this
by interpolating between the training and the reference dis-
tribution derived from a single test sample. Following a
rigorous evaluation protocol, our analysis leads to a surpris-
ing conclusion: Using a standard training procedure – unlike
previous works – self-adaptation significantly outperforms
strong baselines and sets new state-of-the-art segmentation
accuracy on out-of-distribution test domains.

1. Introduction
In this work, we study the out-of-distribution (OOD) gen-

eralization problem of semantic segmentation from synthetic
data [23,24] through the lens of adaptation. In contrast to pre-
vious work that focused on the training process [4,5,32], we
leave the training stage unchanged, but replace the standard
inference procedure with a technique inspired by domain
adaptation methods [1, 16]. The technique, that we term self-
adaptation, leverages a self-supervised loss, which allows
for adapting to a single test sample with a few parameter
updates. Complementary to these loss-based updates, self-
adaptation integrates feature statistics of the training data
with those of the test sample in Batch Normalization (BN)
layers [11]. Expanding upon related studies [25], we find
that this normalization strategy improves the segmentation
accuracy as well as the prediction uncertainty.

*Equal contribution; † work primarily done while at TU Darmstadt.
Code and pre-trained models: https://github.com/visinf/self-adaptive.
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Figure 1. Self-adaptation perceptibly improves real-world general-
ization of semantic segmentation models (here, trained on GTA).

Related work. Domain randomization has been the preva-
lent approach in previous work on generalization of seman-
tic segmentation models [4, 9, 14, 15, 22, 32]. A few other
techniques have also been successful in learning domain-
invariant features, such as instance-selective whitening loss
[6], swapping channel-wise statistics in normalization lay-
ers [27], meta-learning [13], distillation [5] and instance
normalization (IN) layers [21]. At their core, all these train-
ing strategies are instantiations of the Empirical Risk Mini-
mization (ERM), since they minimize the training loss w.r.t.
samples from the training distribution. However, in the OOD
setting studied here, this distribution is assumed to be dis-
tinct from the test distribution, hence the premise of ERM,
the i.i.d. assumption of the training and test distribution, does
not apply. In contrast to these works, we do not alter the
training process or the model architecture, but instead focus
on the inference process by adjusting the model to each input
sample at test time. See Fig. 1 for result preview.

Updating model parameters at test time is not new [8, 12].

https://github.com/visinf/self-adaptive
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Figure 2. Overview of self-adaptation operating on a single sample.
Sec. 2 elaborates on this process in more detail.

However, its surprising effectiveness in dealing with OOD
samples has only recently begun to emerge [26,29]. BN [11]
and other normalization techniques have also been increas-
ingly linked to OOD generalization [10, 25]. Schneider et
al. [25] combine the source and target statistics during in-
ference, where the statistics are weighted depending on the
number of samples that these statistics aggregate. Nado et
al. [18] propose using batch statistics during inference from
the target domain instead of the training statistics acquired
from the source domain. Note that these works [25, 26, 29]
focus on domain adaptation in the context of image classi-
fication and typically assume access to more than a single
sample from the target distribution. We here address domain
generalization (DG) for semantic segmentation, which is
fundamentally different, as it only allows access to a single
datum from the test set [26].

2. Self-adaptation: Adapting to a single sample
Our approach, visualized in Fig. 2, uses data augmenta-

tion to create a mini-batch of images for each test sample.
Based on the original test image, we first create a set of N
augmented images by multi-scaling, horizontal flipping, and
grayscaling. This augmented mini-batch passes through the
CNN. We transform the produced semantic maps from the
model back to the image plane of the original image using in-
verse similarity transformations, and obtain mi,:,:,: for every
sample i in the mini-batch. This allows the model to have
multiple predictions for one pixel. We then compute the
mean m̄ of these softmax probabilities along the mini-batch
dimension i for class c and pixel (j, k) on the spatial grid, as

m̄c,j,k =
1

N

∑
i

mi,c,j,k. (1)

Using hyperparameter ψ ∈ (0, 1), we compute a threshold
value tc from the maximum probability of every class to
yield a class-dependent threshold tc:

tc = ψ ·max(m̄c,:,:). (2)

We finally extract the dominant class c∗j,k for every pixel by

c∗j,k = argmax(m̄:,j,k). (3)

We ignore low-confidence predictions using our class-
dependent threshold tc. Specifically, all pixels with a soft-
max probability below the threshold are set to an ignore
label, while the remaining pixels use the dominant class c∗j,k
as the pseudo label uj,k,

uj,k =

{
c∗j,k, if max(m̄:,j,k) ≥ tc∗j,k
ignore, else.

(4)

The pseudo ground truth u for the test image is used to fine-
tune the model for Nt iterations with gradient descent using
cross-entropy. We determine all hyperparameters, i.e. res-
olution of the scales, threshold ψ, number of iterations Nt,
and learning rate η, based on a validation dataset, which
is distinct from the test domain (see Sec. 3.1). After the
self-adaptation process, we produce the final prediction for
the test sample using the updated model weights. Since no
knowledge about the complete test distribution must leak
into the model in the DG setting, we reset these weights to
their initial values to process the next sample.

The argmax operation in Eq. (3) and applying the thresh-
old in Eq. (4) aim to select only the most confident pixel
predictions. If the confidence values are miscalibrated (e.g.,
due to the domain shift), a significant fraction of incorrect
pixel labels will end up in the pseudo mask. To mitigate this
issue, we introduce self-adaptive normalization (SaN). It
improves the test-time behavior of BN layers by combining
the inductive bias coming in the form of the running statis-
tics from the source domain with statistics extracted from a
single test instance. Let the source mean µ̂s and the variance
σ̂2
s denote the running average of the sample statistics in a

BN layer (for some feature channel) at training time. If we
had the target domain knowledge expressed by the sufficient
statistics µ̂t and σ̂2

t , we could use those in place of µ̂s and
σ̂2
s in BN to compensate for the covariate shift. However, at

test time we only have access to the sample estimates, µt and
σ2
t , provided by a single datum from the target distribution:

µt =
1

HW

∑
j,k

z0,j,k , σ2
t = 1

HW

∑
j,k

(
z0,j,k − µt

)2
, (5)

where z0 ∈ RH,W is a spatial feature channel in a CNN of
the target sample. The leading index of 0 emphasizes that
only one image sample is available at test time. At inference
time, we propose to compute the new mean and variance, µ̂t

and σ̂t, as follows:

µ̂t := (1− α)µ̂s + αµt , σ̂2
t := (1− α)σ̂2

s + ασ2
t , (6)

where the hyperparameter α ∈ [0, 1] is chosen on the vali-
dation set and is fixed for all test images. Notably, this does
not affect the behavior of the BN layers at training time; µ̂t

and σ̂2
t apply in the BN layers only at test time.



Table 1. Segmentation accuracy and model calibration using SaN. (a) The mean IoU (%) on three target domains (Cityscapes, BDD, IDD)
across both backbones, trained on GTA and SYNTHIA . t-BN denotes train BN [11], while p-BN refers to prediction-time BN [18]. (b)
The ECE (%) on three target domains (Cityscapes, BDD, IDD) across both backbones trained on GTA and SYNTHIA and compare to
MC-Dropout [7]. The in-domain bounds on ECE when directly trained on Cityscapes/BDD/IDD are 7.46%/14.99%/9.48% for ResNet-50.

(a) Method IoU (%, ↑), Source: GTA / SYNTHIA

CS BDD IDD

ResNet-50
w/ t-BN 30.95 31.83 28.52 24.30 32.78 24.73
w/ p-BN 37.71 33.83 31.67 23.36 30.85 23.39
w/ SaN (Ours) 37.54 36.14 32.79 26.66 34.21 26.37

(b) Method ECE (%, ↓), Source: GTA / SYNTHIA

CS BDD IDD

ResNet-50 37.28 37.50 35.61 43.19 27.73 40.11
w/ SaN (Ours) 30.57 30.96 30.94 33.27 26.90 36.31
w/ MC-Dropout 30.29 34.82 29.80 37.30 24.17 36.63
w/ both (Ours) 25.50 30.66 27.36 33.06 22.62 35.60

3. Experiments

3.1. Designing principled evaluation

Previous studies [4, 5, 21, 32] on DG for semantic seg-
mentation used divergent evaluation methodologies, which
exacerbates the comparison and reproducibility in follow-up
research. We revise the evaluation protocol which allows
us to follow the best practice in machine learning, yet will
not disadvantage previous work in the empirical comparison.
In particular, we follow four principles: (i) the test set must
comprise multiple domains; (ii) a single model must be used
for all domains; (iii) the validation set must be clearly spec-
ified; (iv) no test images may be used for model selection.
These principles follow naturally from the requirements of
DG, with (iii) and (iv) also being widely accepted in the re-
search community. Nevertheless, we found that no previous
work on DG for semantic segmentation has yet fulfilled all of
these principles. To implement these principles, we assume
access to two data distributions for model training and vali-
dation, the source data and the validation set. We assess the
generalization ability of the model yielded by the validation
process on qualitatively distinct target sets. We now con-
cretize the datasets used in this study, which focus on traffic
scenes for compatibility with previous work [4, 21, 32].
Source data. We train our model on the training split of
two synthetic datasets (mutually exclusive) with low-cost
ground truth: GTA [23] and SYNTHIA [24]. Importantly,
these datasets exhibit domain shift w.r.t. real world.
Validation set. For model selection and hyperparameter
tuning, we use the validation set of WildDash [33]. It is
understood to be of limited quantity (compared to the source
data), owing to its more costly annotation compared to the
source data. In contrast to the training set, however, it may
bear closer visual resemblance to the target domains.
Target data. Our test domain comprises multiple real-
world segmentation benchmarks: Cityscapes [23], BDD [31],
IDD [28] and Mapillary [20]. For consistency with previous
work, we use the validation sets of these datasets, which are
not accessible to the model until the test time.

3.2. SaN improves OOD accuracy and calibration

For both source domains (GTA, SYNTHIA) in combina-
tion with all main target domains (Cityscapes, BDD, IDD),
we investigate the effect of SaN on out-of-domain segmen-
tation accuracy and calibration. We first select α on the
validation set and report the results in Tab. 1. In Tab. 1a,
we compare the SaN accuracy on the target domains with
t-BN and p-BN [18]. While t-BN uses the running average
µ̂s and σ̂2

s in BN layers for the test data, as was originally
suggested [11], p-BN employs µt and σ2

t of the input test
sample instead, which can improve the prediction accuracy
in the OOD scenario [18]. Remarkably, SaN improves the
mean IoU not only of the t-BN baseline (e.g., by 4.1% IoU
with ResNet-50 trained on GTA, on average), which repre-
sents an established evaluation mode, but also over p-BN.
When trained on SYNTHIA, SaN yields stable improvement
over the t-BN baseline even despite p-BN being significantly
worse than t-BN in this scenario. Furthermore, we found that
the calibration of our models, in terms of the expected cali-
bration error (ECE) [19], also improves. As shown in Tab. 1b,
not only does SaN substantially enhance the baseline, but
it even tends to outperform the widely used approach for
uncertainty estimation, the MC-Dropout [7]. Rather sur-
prisingly, SaN exhibits a complementary effect with MC-
Dropout: the calibration of the predictions improves even
further when both methods are used jointly. This observa-
tion holds even for the segmentation accuracy. For example,
our model trained on GTA and tested with SaN and MC-
Dropout (i.e., by averaging the predictions) improves the
IoU of the SaN-only inference on Cityscapes, BDD, IDD
by 1.3%, 2.34%, 1.29%, whereas MC-Dropout alone does
not benefit model accuracy. Overall, the combined results
from Tab. 1 demonstrate that SaN improves both the model’s
prediction accuracy and calibration on OOD samples.

3.3. Self-adaptation: New state of the art

We compare self-adaptation with state-of-the-art DG
methods in Tab. 2. Most of the other methods report their
results on weakly tuned baselines, and we empirically found



Table 2. Mean IoU (%) comparison to state-of-the-art DG methods for both source domains (GTA, SYNTHIA) as well as three target
domains (Cityscapes, Mapillary, BDD). In-domain training to obtain the upper bounds uses our baseline DeepLabv1 following the same
schedule as with the synthetic datasets. (‡), (†) and (††) denote the use of FCN [17], DeepLabv2 [2] and DeepLabv3+ [3], respectively.

Method Backbone: ResNet-50 Backbone: ResNet-101

CS Mapillary BDD CS Mapillary BDD

In-domain Bound 71.23 58.39 58.53 73.84 62.81 61.19

G
TA

No Adapt 32.45↑4.97 25.66↑8.46 26.73↑5.41 33.56↑8.97 28.33↑9.72 27.76↑10.96
DRPC‡ [32] 37.42 34.12 32.14 42.53 38.05 38.72
No Adapt 35.16↑9.46 31.29↑14.77 29.71↑8.71 35.73↑10.06 33.42↑13.66 34.06↑7.67
WildNet†† [15] 44.62 46.09 38.42 45.79 47.08 41.73
No Adapt 29.32↑10.43 28.33↑13.53 25.71↑11.63 30.64↑14.69 28.65↑12.12 27.82↑13.36
SAN-SAW† [22] 39.75 41.86 37.34 45.33 40.77 41.18
No Adapt 30.95↑14.18 34.56↑12.93 28.52↑11.09 32.90↑14.09 36.00↑11.49 32.54↑7.67Self-adaptation (Ours) 45.13 47.49 39.61 46.99 47.49 40.21

SY
N

TH
IA

No Adapt 28.36↑7.29 27.24↑5.50 25.16↑6.37 29.67↑7.91 28.73↑5.39 25.64↑8.70
DRPC‡ [32] 35.65 32.74 31.53 37.58 34.12 34.34
No Adapt 23.18↑15.74 21.79↑12.73 24.50↑10.74 23.85↑17.02 21.84↑15.42 25.01↑10.97
SAN-SAW† [22] 38.92 34.52 35.24 40.87 37.26 35.98
No Adapt 31.83↑9.77 33.41↑7.80 24.30↑9.05 37.25↑5.07 36.84↑4.36 29.32↑3.95Self-adaptation (Ours) 41.60 41.21 33.35 42.32 41.20 33.27

such suboptimal baselines to be the easiest to improve upon.
Nevertheless, we show consistent improvements even over a
carefully tuned, hence substantially stronger baseline regard-
less of the backbone architecture or source data. Our single
model with self-adaptation even outperforms DRPC [32]
and FSDR [9] on most benchmarks (e.g., by 4.2− 9.4% on
Mapillary with ResNet-101). These methods train individual
models for each target domain; FSDR [9] further uses the
target domains for hyperparameter tuning, hence violates our
OOD evaluation protocol. Note that ASG [5] and CSG [4]
(as well as DRPC [32]) require access to a distribution of real
images for training, while IBN-Net [21] modifies the model
architecture. Our approach requires neither. WildNet [15]
appears to be more accurate than self-adaptation on BDD
with ResNet-101. However, it uses a more advanced archi-
tecture (DeepLabv3+ vs. DeepLabv1). In fact, we tested
self-adaptation with DeepLabv3+ as well, and found it to
outperform WildNet in this setup by 2.79% IoU, as expected.
Similarly, SAN-SAW [22] reaches higher accuracy on BDD,
if trained on SYNTHIA, presumably due to the ASPP mod-
ule [2] that we do not use. Self-adaptation considerably
outperforms SAN-SAW in all other scenarios. Overall, de-
spite adhering to a stricter evaluation practice and a simpler
model architecture, self-adaptation overwhelmingly exceeds
the segmentation accuracy of previous work.

Comparison to Tent [29]. Like self-adaptation, Tent [29]
also updates model parameters at test time. However, dif-
ferent from constructing the pseudo labels based on well-
calibrated predictions in our self-adaptation, Tent simply

minimizes the entropy of a single-scale prediction. Tent
also limits the adaptation to updating only the BN param-
eters, whereas our self-adaptation generalizes this process
to convolutional layers. To demonstrate these advantages,
we train HRNet-W18 [30] on GTA and compare the IoU
on Cityscapes to the equivalent configuration of Tent. Un-
der a comparable computational budget of 10 model update
iterations, self-adaptation substantially outpaces Tent, by
a remarkable 7.7% IoU (from 36.4% to 44.1%). Notably,
SaN alone reaches 40.0%, hence already outperforms Tent
significantly with a single forward pass, by 3.6%.
Qualitative analysis (Fig. 1). Self-adaptation yields a
clearly perceivable improvement over the baseline, espe-
cially in terms of image boundary consistency. It exhibits
more homogeneous semantic masks and reduces spatial ir-
regularities of the baseline (e.g., “sidewalk” errors).

4. Conclusion

We presented and studied a self-adaptive inference pro-
cess. Our analysis clearly demonstrates that a single sample
from the test domain can already suffice to substantially im-
prove model predictions. The accuracy improvement shown
by our experiments is remarkably substantial, despite no
changes to the training process or the model architecture,
unlike in previous works. We hope that these encouraging
results will incentivize our research community to study self-
adaptive techniques in other application domains, such as
panoptic segmentation, or monocular depth prediction.
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