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Abstract

Source-free domain adaptation has become popular be-
cause of its practical usefulness and no need to access
source data. However, the adaptation process still takes a
considerable amount of time and is predominantly based on
optimization that relies on back-propagation. In this work
we present a simple feed-forward approach that challenges
the need for back-propagation based adaptation. Our ap-
proach is based on computing prototypes of classes under
the domain shift using a pre-trained model. It achieves
strong improvements in accuracy compared to the pre-
trained model and requires only a small fraction of time of
existing domain adaptation methods.

1. Introduction

In real-world applications of machine learning it is com-
mon to encounter domain shift i.e. target deployment data
come from a different distribution than source data. For
example, there is a significant difference in style between
images taken during the summer and winter. Domain shift
typically results in decreased performance of models trained
only on the source data, yet with suitable techniques it is
possible to recover a significant part of the lost performance.
The practical importance of tackling domain shift has led to
domain adaptation becoming a popular field with a wide va-
riety of methods and scenarios.

The standard domain adaptation scenario is that a model
is trained with labelled source data alongside unlabelled tar-
get domain data. However, it has been shown recently [10]
that access to the source data is not needed and strong per-
formance can be achieved even with a pre-trained model
and unlabelled target data only. Model trained on the source
data is adapted using only unlabelled target data. This sce-
nario has become known as source-free domain adaptation
(SFDA) and has attracted a lot of interest due to its practical
usefulness. For example, storing a large amount of source
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domain data on an edge device such as smartphone is not
practical and SFDA eliminates such need.

Existing methods for source-free domain adaptation pre-
dominantly use back-propagation based fine-tuning that
takes many iterations. In our work we challenge the need
for these costly methods and instead focus on feed-forward
methods. A simple example of feed-forward SFDA is to
update the batch normalisation statistics [4]. We propose an
alternative simple feed-forward strategy that achieves sig-
nificantly better results.

Inspired by prototypical networks from few-shot learn-
ing literature [14], we propose to construct prototypes of
different classes under the domain shift, using the pre-
trained model for extracting features and pseudo-labels.
During inference we find the closest prototype to the fea-
tures of the current test example, and we select the class of
that prototype as prediction. We replace the classifier layer
by a nearest-prototype layer, which can be understood as a
new way of fine-tuning pre-trained models.

Our results on a variety of standard benchmarks – Office,
Office-Home and ViSDA-C – show this is a strategy that can
lead to surprisingly strong results, at a very small fraction
of time compared to standard SFDA methods. We argue
our method is a simple baseline which should be included
in the comparison when evaluating various SFDA methods.
At the same time it is a practical strategy that can be applied
on edge devices with great success. Our main contribution
is a new simple and fast feed-forward method for source-
free domain adaptation.

2. Related Work
Source-free domain adaptation: After [10] observed

unsupervised domain adaptation does not need access to the
source data, the field of SFDA has attracted a lot of atten-
tion and several methods were proposed. [10] have devel-
oped two methods to solve the practical scenario they have
identified, namely SHOT-IM and SHOT methods. SHOT-
IM is a simpler version of SHOT, and it fine-tunes the pre-
trained feature extractor by maximizing information trans-
ferred from source model. SHOT extends SHOT-IM by



self-supervised pseudo-labelling, which leads to improved
results but makes the method more costly. Other recent
methods include universal SFDA (USFDA) [7] that per-
forms SFDA using an instance-level weighting mechanism
called source similarity metric, and historical contrastive
learning (HCL) [2] that uses historical contrastive instance
and category discrimination. SFDA can also be used for
semantic segmentation [6, 11] and object detection [9].

Test-time domain adaptation: Related to SFDA is
test-time domain adaptation (TTDA) that does adaptation
on the current test minibatch, rather than using a separate
dataset for adaptation. From these, TENT [16] optimizes
channel-wise affine transformation using the current mini-
batch, while ARM [17] provides a general meta-learning
framework for TTDA that includes for example updates to
batch normalisation statistics or context network that em-
beds the whole minibatch and uses it as additional chan-
nels. Test-time template adjuster (T3A) [5] is another re-
cent method for TTDA and also uses the idea of prototypes
in combination with entropy-based filtering. However, [5]
have not studied the use of prototypes for source-free do-
main adaptation and their approach towards constructing
prototypes is different from ours. They consider a stream-
ing scenario where examples arrive and are classified with
prototypes constructed with examples seen so far.

3. Methods
In the SFDA scenario, we are given a pre-trained model,

composed of feature extractor fθ and classifier fϕ, and tar-
get dataset DT . The goal is to adapt the pre-trained model
and obtain strong performance on DT . As part of our
method we construct a prototype of each class and use the
prototypes for classification instead of the pre-trained clas-
sifier layer.

We construct the prototypes cl of different classes l as

cl =

∑N
i=1 fθ(xi)wi∑N

i=1 wi

, (1)

where N = |DT | is the number of examples in the tar-
get dataset, and the weights wi with which the features ex-
tracted for example xi contribute to the prototype computa-
tion are:

wi = [fϕ◦θ(xi)]l1(argmaxfϕ◦θ(xi) == l).

Only examples predicted to be of class l contribute to
calculation of class prototype cl, for which we use an indi-
cator function denoted by 1. The examples for which confi-
dence is larger contribute more – more specifically fϕ◦θ(xi)
gives probabilities of different classes and [fϕ◦θ(xi)]l gives
us the probability of class l. We have found confidence-
weighting to consistently improve the quality of prototypes,

compared to standard one-hot approach used in prototypical
networks [14] or T3A [5]. Predictions are made by extract-
ing features from the test example and finding the closest
prototype, using the selected distance measure. We name
our method PDA (prototypical domain adaptation).

PDA w MCD: We extend PDA with an initial step
that uses robust generative classifier (RoG) based on Min-
imum Covariance Determinant [8] to obtain higher-quality
pseudo-labels. Higher-quality pseudo-labels enable us to
construct more accurate prototypes of different classes un-
der the domain shift. RoG replaces the pre-trained classifier
and is only used for creating prototypes.

In our case the parameters of RoG are estimated us-
ing the features and pseudo-labels given by the pre-trained
model when applied on target domain data. We follow the
approach from [8] with the approximate version inspired
by [3]. We use one RoG classifier rather than an ensem-
ble of generate classifiers because an ensemble led to only
marginal improvements.

4. Experiments
4.1. Experimental details

Benchmarks: We use standard benchmarks used for
evaluating SFDA methods, namely Office [13], Office-
Home [15] and VisDA-C [12].

Baselines: We compare our approach with 1) directly
using the pre-trained model on the target dataset, and 2)
updating the BN statistics using the target dataset. We
also provide results for SHOT-IM and SHOT methods from
[10] to give context about performance of current back-
propagation based methods for SFDA. The focus is on il-
lustrating the performance of back-propagation based meth-
ods rather than doing a comparison with all recent back-
propagation based SFDA approaches.

Experiment set-up: We follow the set-up from [10] and
use the code they have released. We also utilize their pre-
trained models, which are provided for three random seeds.
For Office and Office-Home benchmarks we use ResNet50,
and for ViSDA-C we use ResNet101 [1]. We select cosine
distance to find which class prototype is the closest to the
current test example. Following [10] we report the accu-
racies on the target set, reporting the average across three
random seeds. As part of PDA, we also update the BN
statistics.

4.2. Results

We give our main results in Table 1 for Office bench-
mark, Table 2 for Office-Home benchmark and Table 3 for
ViSDA-C synthetic-to-real benchmark. We observe that for
Office and Office-Home simply updating BN statistics is not
sufficient, but with PDA we achieve a significant increase
in accuracy compared to the pre-trained source model. As a



METHOD A→D A→W D→A D→W W→A W→D AVG.

SOURCE 80.8 77.1 60.2 95.3 63.5 98.7 79.3
BN UPDATE 80.1 80.7 61.2 97.4 61.9 99.7 80.2

PDA 88.3 87.8 67.6 98.1 68.1 99.7 84.9
PDA W MCD 88.2 88.9 69.3 97.7 69.3 99.7 85.5

SHOT-IM (PAPER) 90.6 91.2 72.5 98.3 71.4 99.9 87.3
SHOT (PAPER) 94.0 90.1 74.7 98.4 74.3 99.9 88.6

Table 1. Office dataset - target domain accuracies (%) across various source and target domains – Amazon, DSLR and Webcam.

METHOD A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P AVG.

SOURCE 44.6 67.4 74.7 52.7 62.7 64.8 53.1 40.7 73.2 65.3 45.4 78.1 60.2
BN UPDATE 43.8 63.4 73.8 56.1 63.4 66.8 54.5 42.7 74.0 66.4 47.6 77.3 60.8

PDA 48.1 71.2 77.7 61.9 71.2 73.4 60.4 46.2 78.3 68.8 50.4 80.2 65.6
PDA W MCD 49.1 72.4 78.6 63.0 72.9 74.5 61.0 47.9 79.5 69.5 51.5 80.6 66.7

SHOT-IM (PAPER) 55.4 76.6 80.4 66.9 74.3 75.4 65.6 54.8 80.7 73.7 58.4 83.4 70.5
SHOT (PAPER) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

Table 2. Office-Home dataset - target domain accuracies (%) across various source and target domains – Art, Clipart, Product, Real-World.

result, we are able to get closer to the performance of stan-
dard back-propagation based methods, at a very small frac-
tion of time. Combination of PDA with MCD leads to addi-
tional improvements in accuracy of PDA. We also observe
significant accuracy improvements on large-scale ViSDA-C
benchmark.

METHOD SYN-TO-REAL

SOURCE 46.6
BN UPDATE 64.7

PDA 70.9
PDA W MCD 72.0

SHOT-IM (PAPER) 80.4
SHOT (PAPER) 82.9

Table 3. SFDA on ViSDA-C synthetic-to-real - target domain
accuracies (%). Using official pre-trained models and averaged
across three seeds. ResNet101.

5. Analysis
As part of analysis we study several questions: 1) How

does the adaptation time of PDA (or PDA w MCD) compare
with standard back-propagation based methods? 2) What
is the estimated upper bound performance when using true
labels for constructing prototypes? 3) Would applying RoG
classifier trained under domain shift be sufficient?

Time comparison: We compare our PDA method in
terms of adaptation time with existing back-propagation
based methods to show the clear speed benefits our methods
bring. The results in Figure 1 confirm the adaptation time
required by our PDA (or PDA w MCD) method is only a
very small fraction of adaptation time required by SHOT-IM
and SHOT methods that use back-propagation. Evaluation
times (inference) have been similar for all methods.

Upper bound of PDA: We use the true labels of target
domain data to estimate an upper bound on the performance
of PDA. Results in Table 4 show that using true labels leads
to large improvements, which suggests there is potential for
development of new highly-accurate feed-forward SFDA
methods. It is particularly interesting to observe that for
Office and Office-Home dataset the upper bound estimated
using the true labels is a few percentages higher than what
is obtained by SHOT-IM and SHOT methods.

METHOD OFFICE OFFICE-HOME VISDA-C

SOURCE 79.3 60.2 46.6
BN UPDATE 80.2 60.8 64.7

PDA 84.9 65.6 70.9
PDA W MCD 85.5 66.7 72.0
PDA – UPPER 91.0 75.9 76.1

Table 4. Upper bound performance of PDA by using true labels –
average accuracy across domains (%).
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Figure 1. Adaptation time on Office and Office-Home datasets for
selected source and target domains.

Directly using RoG classifier based on MCD: We
have evaluated the novel use of RoG MCD-based classifier
for SFDA in Table 5. The results show that even if this ap-
proach is helpful, it needs to be combined with PDA for the
best results, particularly for Office dataset.

METHOD OFFICE OFFICE-HOME VISDA-C

SOURCE 79.3 60.2 46.6
BN UPDATE 80.2 60.8 64.7

PDA W MCD 85.5 66.7 72.0
MCD 81.6 65.4 70.4

Table 5. Evaluation of using RoG classifier based on MCD directly
– average accuracy across domains (%).

6. Conclusion
We have developed a new simple method for feed-

forward source-free domain-adaptation that is based on
computing prototypes of different classes under domain
shift. The method achieves strong results and takes only
a small fraction of time to run compared to standard back-
propagation based methods. Our evaluation with true labels
has shown there is scope for developing further new feed-
forward SFDA methods, for which our method acts as a
well-performing baseline.
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