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Abstract

For models to generalize under unseen domains (a.k.a
domain generalization), it is crucial to learn feature rep-
resentations that are domain-agnostic and capture the un-
derlying semantics that makes up an object. Recent ad-
vances towards weakly supervised vision-language models
(such as CLIP) have shown their ability on object under-
standing by capturing semantic characteristics that gener-
alize under different domains. Hence, it becomes important
to investigate how the semantic knowledge present in their
representations can be effectively incorporated and utilized
for domain generalization. Motivated from this, we study
how semantic information from existing pre-trained mul-
timodal networks can be leveraged in an ’intrinsic” way
to make systems generalize under unseen domains.We pro-
pose IntriNsic multimodality for Domaln GeneralizatiOn
(INDIGO), a simple and elegant framework that leverages
the intrinsic modality present in pre-trained multimodal net-
works to enhance generalization to unseen domains at test-
time. We experiment on different Domain Generalization
benchmarks— DomainNet and Office Home and show state-
of-the-art generalization performance on unseen domains.
Further, we provide a thorough analysis to develop a holis-
tic understanding of INDIGO.

1. Introduction

Domain Generalization (DG) [14,37,38] — a setting that
aims to learn a model using data from source domains
(for e.g. clipart, painting, real world) in order to gen-
eralize and predict effectively on an unseen domain (e.g.
sketch) — has gained significant importance recently, to ad-
dress this need. Besides the standard DG setting, the com-
munity has also seen concerted efforts towards defining
new DG-related problem settings [21, 33] as well as lever-
aging any available data to generalize to unseen domains
[5,25]. Most previous approaches [9, 14, 16,20,22,37,38]
that address/aim to tackle the DG problem use different
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Figure 1. Illustration of our broader idea. In scenarios where we don’t
have access to explicit modalities like image captions for source domain
data, we leverage the “intrinsic” modality present in pre-trained multi-
modal networks along with visual modality obtained from image.

learning paradigms and training strategies to learn domain-
agnostic semantic features that represent an object category
and can thus extend to unseen domain samples at test-time.
Other methods [6, 30, 31] have also shown that leverag-
ing domain-specific features along with domain-invariant
information can further improve the model’s generaliza-
tion on unseen domains. More recently, vision transform-
ers (ViTs) [7, 35] have demonstrated robustness to domain-
shift [24,39] which is desirable for making models general-
ize to unseen domains.

An alternative strategy to address this task can be to
look for other sources of information that can help disen-
tangle domain-specific and domain-agnostic characteristics
and thereby equip models with the ability to capture general
domain-agnostic class-level cues. Recent progress towards
weakly supervised vision-language models [17,19,27] have
shown their abilities on semantic understanding and trig-
gered the interest in using them for practical use in various
settings. These methods are known to learning holistic ob-
ject representations from cheap, weakly supervised noisy
text annotations that capture class-level semantics of object
categories such as shape/content [27]. Such representations
can inherently capture object characteristics that generalize
to unseen domains. We leverage this potential of vision-
language models in this work.

Motivated from this, we study how the multimodal in-
formation in pre-trained multimodal networks [17, 19,27]
can be leveraged intrinsically to make systems robust to
domain-shift and enhance generalization on unseen do-
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Figure 2. (Proposed approach) INDIGO consists of a multimodal
branch comprised of pre-trained MViT to obtain intrinsic modality
, a visual branch to extract visual modality and a fusion module to
combine both.

mains. Specifically:

* We propose IntriNsic multimodality for Domaln
GeneralizatiOn (INDIGO), a simple and elegant way of
leveraging the intrinsic modality present in pre-trained
multimodal networks along with the visual modality in
order to generalize better to unseen domains.

* We study the performance of recent popular vision-
language models for domain generalization under dif-
ferent scenarios and show that fusing the visual modal-
ity from a trainable visual encoder (through our pro-
posed attention based strategy) with intrinsic modality ex-
tracted from frozen pre-trained multimodal networks con-
sistently offers better generalization performance.

* We perform comprehensive experiments on standard DG
benchmarks - DomainNet and Office-Home and show
that INDIGO achieves new state-of-the-art by outper-
forming prior SOTAs, conventional techniques like trans-

fer learning, fine-tuning and zero-shot.
Figure | provides overview of the proposed idea. To the

best of our knowledge, this is the first effort to study how
multimodality can be leveraged intrinsically via pre-trained
multimodal models to generalize better to unseen domains.

2. Proposed Methodology

Overall Framework. As depicted in Figure 2, there are
three main components in our approach: (1) a multimodal
branch which consists of a multimodal vision transformer
(MVIT) pre-trained on image-text pairs used to extract the

intrinsic modality present in it; (2) a visual branch, which
trains a vision transformer (ViT) to extract visual modality
that will encode meaningful shape-biased concepts from
the source domains, useful for generalization; and (3) a
fusion module which combines best of both - intrinsic
and visual modality through a multi-headed self-attention
mechanism for final classification.

Multimodal branch. We leverage pre-trained large-scale
vision-language networks like CLIP [27] that use a con-
trastive objective to push the embeddings of matched
image-text pairs together and non-matched pairs apart. The
pipeline generally consists of an image encoder f(.) (in
our case a ViT which we call MViT), a text encoder g(.),
and linear projection layers h’(.) and h”(.). The image
and text features (obtained from their respective encoders)
are projected to the same dimension, normalized, and then
aligned using the following contrastive loss:
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here (x;, t;) denote the i*" image-text pair in a batch
of size N. f3_(.) represents the MViT’s representation
corresponding to the CLS token. The similarity function
sim(, ) is measured by dot product, and 7 is a learnable
temperature variable to scale the logits.

In scenarios where we do not have direct access to text

annotations, we can assume that an image’s unnormal-
ized projected embedding h!(fX,(x;)) would be weakly
aligned with its hypothetical text description. This allows
us to leverage the intrinsic modality present in a pre-trained
multimodal vision transformer. Hence, we propose to use
this unnormalized projected embedding h!( 2, (x;)) as a
“intrinsic” modality in our overall pipeline.
Visual branch. The visual branch is a sibling to the mul-
timodal branch. We employ a trainable vision transformer,
fY(.), to learn visual concepts from source domains that
might be absent in MViT representations but are relevant
to the task. These concepts can be dataset-, domain-, or
even class-specific, which, when combined with the “intrin-
sic” modality, can help boost the overall performance on the
given task. Moreover, by design, since ViTs are better than
CNNs in recognizing object shapes [24,39], we believe their
shape-biased representations £, ; (x) will further assist our
overall pipeline in generalizing to unseen domains (as we
show through our experiments).
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Fusion module. The purpose of the fusion module is to fuse
the “intrinsic” modality h!(f (x))) (obtained from the
multimodal branch) and the visual modality fY .(x) (ob-
tained from the visual branch) to perform the final classifi-
cation. We first project both of them to same space via lin-
ear projections w? (.) and w" (.) to obtain intrinsic modal-
ity w™ (h!(fM,(x))) and visual modality w" (f¥ .(x)) to-
kens. This is followed by a series of K multi-headed self-
attention blocks (MS2) and feed-forward networks (FFN) to
perform inter-modality attention on both tokens as follows

xp! = wM (B (fEls(x))); x¢ = w" (f&Ls(x))
xo = [x" || x{
O = Xp—1 + MSA(LN(x)_1)) (1)
X) = 0} + FFN(LN(oy))

xg =[xy || xk]

The attention mechanism allows the intrinsic modality
token to attend with the visual modality token and incorpo-
rate any dataset, domain, or class-specific concepts present
in it. Similarly, the visual modality token will interact with
the intrinsic modality token to learn multimodal concepts
present in it. This ensures that final representations leverage
the best of both modalities. Finally, the transformed repre-
sentation of intrinsic modality (x}¢) is passed through a lin-
ear layer ¢ (.) to get class predictions and minimize cross-
entropy loss. In addition to this, we add a regularizer that
also minimizes classification loss on the transformed repre-
sentation of visual modality token (by passing xY%- through
another linear layer ¢ (.)). Overall loss can be written as
M

(

Oar = M (X)) Las = Lop (G, y)

3. Experiments and Analysis

We perform experiments on the following DG datasets
- (1) DomainNet [26], a large scale dataset containing
586,575 examples from 345 classes and six domains (cli-
part, infograph, painting, quickdraw, real, sketch); and (2)
Office-Home [36], containing 15,588 examples from 65
classes and four domains (art, clipart, product, real).
Baselines. We evaluate and compare four kinds of train-
ing pipelines - (1) CNNs, which include state-of-the-arts
[2,4, 28] that use a Resnet-50 backbone; (2) ViTs, which
include DeiT-S [35] (considered equivalent to Resnet-50)
backbone trained in AGG manner; (3) MViTs, which in-
clude conventional ways like zero-shot inference, transfer
learning using linear layer (Linear Eval) and attention layers
(Attention Eval) over frozen CLIP features; and (4) MViTs
+ ViTs, that include our proposed fusion, INDIGO (using a
DeiT-S visual backbone).
Training and evaluation protocol. Following previous
works [4, 10,28], we consider each domain as the target do-
main and the rest domains as source domains for training.
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Figure 3. t-SNE plots. t-SNE visualization of learned feature
representations by DeiT-S (standard AGG training), CLIP and our
proposed INDIGO method when clipart and art are chosen as tar-
get domains for Office-Home dataset

We use test-domain validation (reporting best performance
on test set) and training-domain validation model selection
criteria (using a validation set) for DomainNet and Office-
Home, respectively, as described in [10].

Results. Table 1 presents our results when CLIP-ViT-B/16
[27] is used as an MVIT in the multimodal branch. As
we can see, INDIGO achieves new state-of-the-art results
by outperforming all the compared methods by good mar-
gins. In particular, on challenging domains like quickdraw
where conventional ways of using MViTs perform worse
than prior arts, INDIGO achieves the best performance by
leveraging the best of both - intrinsic and the visual modal-
ity. Further, we can observe that ViTs trained with simple
vanilla AGG loss easily beat state-of-the-art CNN-based ap-
proaches - SWAD [4], EoA [2]. This shows that their design
offers shape-biased representations (compared to CNNs),
which INDIGO leverages.

Choice of visual network and number of layers in fu-
sion module. To highlight that INDIGO is leveraging the
visual modality, we perform an ablation where we vary the
strength of ViT used in the visual branch. Additionally, we
also vary the number of layers used in the fusion module to
show its effect on final performance. As shown in Table 2,
by using more powerful (Hybrid ViTs) and large (ViT-B) vi-
sion transformers [7] in the visual branch, the domain gen-
eralization performance of INDIGO improves. This shows
that INDIGO can attend to visual modality to learn addi-
tional shape-biased concepts, and the performance is not
solely because of intrinsic modality. The gain in perfor-
mance becomes prominent when more layers are used in the
fusion module, implying a better inter-modality interaction
between intrinsic and visual modality tokens.

Can fine-tuning MViT help further? In all our previ-
ous experiments, we used a frozen pre-trained multimodal



DomainNet Office-Home
Type Method | ¢ | s | P | Q| I |[Ag| R | C | P | A |Ag
AGG 584 | 499 | 473 | 134 | 198 | 3776 | 773 | 534 | 765 | 62.7 | 6747
IRM [1] 510 | 447 | 388 | 11.8 | 167 | 326 | 772 | 523 | 752 | 61.8 | 66.63
DRO[29] | 478 | 407 | 363 | 9.0 | 172 | 302 | 77.7 | 529 | 755 | 61.6 | 66.93
Mixup [40] | 55.8 | 49.2 | 462 | 12.8 | 19.2 |36.64 | 79.2 | 547 | 77.3 | 64.7 | 68.98
MLDG[15] | 59.3 | 51.2 | 48.8 | 140 | 20.3 |38.72 | 78.6 | 545 | 759 | 63.7 | 68.18
CORAL [34] | 58.8 | 50.8 | 47.5 | 13.6 | 20.8 | 38.3 | 77.9 | 553 | 76.7 | 64.4 | 68.58
MMD[16] | 546 | 475 | 449 | 126 | 196 (3584 | 781 | 53.7 | 76.1 | 63.0 | 67.73
DANN[8] | 53.8 | 467 | 435 | 11.8 | 175 | 34.66 | 76.6 | 51.7 | 74.1 | 593 | 65.43
C-DANN[I8] | 534 | 465 | 447 | 129 | 184 |3518 | 76.0 | 51.1 | 74.1 | 61.0 | 6555
CNNs EoA [2] 659 | 57.1 | 553 | 16.5 | 234 | 43.64 | 81.5 | 59.8 | 795 | 69.1 | 7248
SelfReg [12] | 624 | 53.7 | 51.7 | 147 | 22.5 | 41.0 | 78.8 | 554 | 784 | 64.9 | 69.37
SagNet [23] | 57.5 | 49.5 | 463 | 13.5 | 19.2 | 37.2 | 783 | 548 | 758 | 63.4 | 68.08
ARM[41] | 49.6 | 439 | 415 | 108 | 165 3246 | 752 | 51.0 | 741 | 589 | 64.8
V-REx[13] | 433 | 37.7 | 325 | 9.8 | 141 |27.48 | 76.6 | 53.0 | 753 | 60.7 | 66.4
MTL [3] 58.0 | 49.0 | 462 | 127 | 192 |37.02 | 768 | 524 | 749 | 615 | 664
SAND [32] | 43.8 | 39.9 | 382 | 9.0 | 152 |29.22| 762 | 53.3 | 73.5 | 60.3 | 65.82
RSC[I1] | 555 | 47.8 | 444 | 125 | 183 | 357 | 75.1 | 514 | 748 | 60.7 | 65.50
Fishr [28] | 58.3 | 50.5 | 479 | 13.6 | 202 | 38.1 | 783 | 544 | 762 | 624 | 67.83
SWAD[4] | 66.0 | 555 | 535 | 16.1 | 224 | 427 | 802 | 57.7 | 784 | 66.1 | 70.6
ViTs AGG | 69.14 | 54.25 | 58.15 | 14.83 | 27.55 | 44.78 | 84.64 | 60.10 | 84.43 | 74.2 | 75.84
Zero-Shot | 67.8 | 61.79 | 64.13 | 13.9 | 45.7 | 50.66 | 84.7 | 60.8 | 83.37 | 78.9 | 76.94
MViTs Linear Eval | 632 |59.37 | 57.36 | 10.34 | 41.7 | 46.39 | 82.51 | 66.66 | 81.22 | 72.86 | 75.81
Attention Eval | 75.3 | 64.68 | 64.33 | 16.30 | 44.23 | 52.97 | 88.14 | 69.00 | 88.99 | 77.53 | 80.92
MViTs + ViTs | INDIGO | 76.9 | 65.65 | 66.42 | 17.4 | 46.32 | 54.54 | 89.38 | 73.31 | 90.78 | 79.92 | 83.35

Table 1. ClosedDG results. Performance of INDIGO on DomainNet (C: clipart, S: sketch, P: painting, Q: quickdraw, I: infograph) and
Office-Home (R: real world, C: clipart, P: product, A: art) datasets under closed setting. We highlight the best results and the second best
results. The results are averaged over five runs. INDIGO achieves new state-of-the-art by outperforming all compared methods by good

margins.
3 Layers 12 Layers
Backbone | g | ¢ | P | A Az | R | C | P | A |Ag
Resnet-50 | 88.8 | 72.91 | 90.1 | 79.34 8278 | 89.0 | 72.48 | 902 | 78.2 | 82.47
Dei-Ti | 89.02 | 72.88 | 90.14 | 80.05 83.02 | 89.34 | 73.52 | 90.43 | 79.31 | 83.15
Hybrid-ViT-Ti | 89.1 | 72.77 | 903 | 79.94 83.02 | 89.7 | 73.82 | 90.50 | 79.9 | 83.48
DeiT-S | 89.38 | 7331 [ 90.78 | 79.92 8335 | 90.1 | 74.32 | 90.99 | 80.2 | 83.90
Hybrid-ViT-S | 89.73 | 73.71 | 91.05 | 81.16 83.91 | 90.88 | 75.45 | 91.22 | 81.62 | 84.80
ViT-B 91.4 | 74.23 | 91.84 | 8233 84.95 | 91.76 | 75.85 | 92.13 | 83.51 | 85.81

Table 2. Ablation on choice of visual network and number of
layers in fusion module. Performance of INDIGO when different
networks are used in visual branch and layers of fusion module are
increased on Office-Home (R: real world, C: clipart, P: product,
A: art) under closed setting. The results are averaged over five
runs. Stronger and Larger ViTs can be seen to further improve the
generalization of INDIGO to unseen domains.

Closed OfﬁceHome
Backbone R ‘ C P =
CLIP (FT B.N Layers) 84.00 | 68.92 | 84.13 76 47 78.38
INDIGO (FT B.N Layers) | 89.50 | 73.50 | 91.02 | 80.2 83.55
CLIP (FT Last Layers) 89.6 | 74.5 | 89.70 | 83.43 84.30
INDIGO (FT Last Layer) | 90.83 | 76.87 | 91.64 | 83.91 85.81
CLIP (All Layers) 88.71 | 73.15 | 88.78 | 81.37 83.00
INDIGO (All Layers) 89.51 | 7542 | 90.34 | 82.73 84.5

Table 3. Ablation on finetuning the MViT. Performance of IN-
DIGO when MVIT is also finetuned on Office-Home (R: real
world, C: clipart, P: product, A: art) under closed setting. We
use training-domain validation set model selection criteria. The
results are averaged over five runs.

network. As an additional experiment, along with training
the visual branch and fusion module, we also finetune the
multimodal network (i.e CLIP) . We finetune in two ways
- (1) only normalization layers; and (2) last layer. Table
3 shows that the performance of INDIGO further improves
while still outperforming standalone finetuning of CLIP.
t-SNE plots. We analyze and compare the representations
learned by INDIGO with DeiT-S [35] and CLIP [27] on tar-
get domain (for 25 classes of Office-Home) via t-SNE plots
in Figure 3. As can be seen, for INDIGO, the plot is less
noisy and well segregated into class clusters as compared to
DeiT-S and CLIP, resulting in state-of-the-art generalization
on these target domains.

Conclusions and Future Work In this work, we study
how multimodal information present in pre-trained vision-
language models can be leveraged “intrinsically” to build
systems that generalize to unseen domains. We propose IN-
DIGO, a simple and elegant way to combine the intrinsic
and visual modalities obtained from pre-trained multimodal
network and vision transformer (ViT), respectively. Our fu-
ture work will include the development of better methods to
effectively fuse both modalities to improve generalization
performance in unseen domains further. We also plan to ex-
tend same in other challenging settings like segmentation,
and visual grounding.
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