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Abstract

Image-to-video adaptation has been proposed to exploit
labeling-free web image source for adapting on unlabeled
target videos. This poses two major challenges: (1) spa-
tial domain shift between web images and video frames; (2)
modality gap between image and video data. To address
these challenges, we propose Cycle Domain Adaptation
(CycDA), a cycle-based approach for unsupervised image-
to-video domain adaptation by leveraging the joint spatial
information in images and videos on the one hand and, on
the other hand, training an independent spatio-temporal
model to bridge the modality gap. We alternate between the
spatial and spatio-temporal learning with knowledge trans-
fer between the two in each cycle. We evaluate on bench-
mark datasets for image-to-video and mixed-source domain
adaptation achieving state-of-the-art results.

1. Introduction

The task of action recognition has seen tremendous suc-
cess in recent years with top-performing approaches typi-
cally requiring large-scale labeled video datasets [6,24,25],
which can be impractical in terms of both data collection
and annotation effort. In the meanwhile, webly-supervised
learning has been explored to leverage the large amount of
easily accessible web data as a labeling-free data source for
video recognition [8, 11, 14, 23, 26, 29].

In this work, we address the problem of image-to-video
adaptation with webly-labeled images as the source do-
main and unlabeled videos as the target domain to allow
for action classification without video annotation. This

setting provides two major challenges: (1) the spatial do-
main shift between web images and video frames, based
on difference in image styles, camera perspectives and se-
mantic drifts; (2) the modality gap between spatial images
and spatio-temporal videos. Specifically, this modality gap
restrains that merely spatial knowledge can be transferred
from source to target domain. Previous works on action
recognition with web supervision either learn from web
data directly [7, 9] or perform joint training by combin-
ing the web source with annotated target data [5, 18]. To
specifically address the domain shift between web images
and target videos, some approaches perform class-agnostic
domain-invariant feature learning either within [12] or
across modalities [16, 27, 28], in the absence of ensuring
domain-invariance on the category-level.

In this context, we propose Cycle Domain Adaptation
(CycDA), i.e. alternating knowledge transfer between a spa-
tial model and a spatio-temporal model. Compared to other
works, we address the two challenges at hand, domain-
alignment and closing the modality gap in separate stages,
cycling between both of them. An overview of the Cy-
cDA is given in Fig. 1. With the category knowledge from
the spatio-temporal model, we achieve enhanced category-
level domain invariance on the spatial model. With updated
knowledge transferred from the spatial model, we attain bet-
ter spatio-temporal learning. In this manner, we can better
tackle each challenge for the corresponding model, with the
updated knowledge transferred from the other.

We first evaluate our approach on several challenging
settings for web image based action recognition, where a
single cycle already outperforms baselines and state-of-the-
arts. Second, we show how CycDA can be flexibly applied



for mixed-source image&video-to-video DA settings, lead-
ing to a performance competitive to the state-of-the-art re-
quiring only 5% of the provided source videos.

Our contributions are: (1) we propose to address
web image-to-video domain adaptation by decoupling the
domain-alignment and spatio-temporal learning to bridge
the modality gap. (2) we propose cyclic alternation be-
tween spatial and spatio-temporal learning to improve spa-
tial and spatio-temporal models respectively. (3) we pro-
vide an extensive evaluation with different benchmark tasks
that shows state-of-the-art results on unsupervised image-
to-video domain adaptation and a competitive performance
for the mixed-source image&video-to-video setting.

2. Cycle Domain Adaptation (CycDA)
The task of unsupervised image-to-video DA is to learn

a video classifier given labeled source images and unlabeled
target videos. In order to close the domain gap across these
two different modalities, we employ (1) a spatial (image)
model to train on source web images and frames sampled
from target videos, and (2) a spatio-temporal (video) model
to train on target video clips. We propose a training pipeline
that alternately adapts the two models by passing pseudo
labels to supervise each other in a cycle. This facilitates
the knowledge transfer between both models, where pseudo
labels efficiently guide the model through the correspond-
ing task, i.e. semantic alignment (image model) or spatio-
temporal learning (video model). As shown in Fig. 2, our
CycDA pipeline consists of four training stages:
Notations: First, we denote the feature extractor as
E(·; θE), the classifier as C(·; θC), and the domain dis-
criminator as D(·; θD). Then, we have the image model
ϕI = {EI(·; θIE), CI(·; θIC), DI(·; θID)} and the video
model ϕV = {EV (·; θVE ), CV (·; θVC )}. We use the super-
scripts I , V and F to denote modalities of image, video and
video frame, correspondingly. S and T stand for source
and target domains respectively. The labeled source image
domain is denoted as IS = {(ij , l(ij))|

NI
S

j=1}, where l(·) is
the ground truth label of the corresponding image. The un-
labeled target video domain is VT = {vj |

NV
T

j=1} and each
video vj has Mj frames, the set of frames of unlabeled tar-

get videos V F
T = {{vFj,m|Mj

m=1}|
NV

T
j=1}.

Stage 1 - Class-agnostic Spatial Alignment. We learn
the class-agnostic domain alignment between source web
images and frames sampled from unlabeled target videos.
This reduces the domain gap between the appearance of the
web images and target videos even if the classes could be
misaligned during this stage. We train the image model
ϕI with a supervised cross entropy loss LCE(IS) and
an adversarial domain discrimination loss LADD(IS , V

F
T )

on source images and target frames. With the clas-
sification loss on source images LCE(IS) and the bi-

nary cross entropy loss for domain discrimination given
as LADD(IS , V

F
T ) =

∑
ij ,vF

j′,m
logDI(EI(ij ; θ

I
E); θ

I
D) +

log(1 − DI(EI(vFj′,m; θIE); θ
I
D)), the overall objective

is minθI
E ,θI

C
LCE(IS) + βmaxθI

E
minθI

D
LADD(IS , V

F
T ),

where β is the trade-off weight between the two losses. The
domain alignment is class-agnostic as there is not yet any
pseudo label for category knowledge in the target domain.
The alignment is performed globally at the domain level.

Stage 2 & Stage 4 - Spatio-Temporal Learning. In these
stages, we use the trained image model ϕI from the previ-
ous stage to generate pseudo labels for frames of the target
videos. We perform frame confidence thresholding and ag-
gregate frame-level predictions into video-level pseudo la-
bels. Then we perform supervised spatio-temporal learning
with the pseudo labeled target data.

Specifically, we first use ϕI to predict the pseudo label
l̂(·) for each frame of the target videos. We employ a spatio-
temporal model that trains on target videos capturing both
spatial and temporal information in the target domain only.
To select new pseudo label candidates, we temporally ag-
gregate frame-level predictions into a video-level predic-
tion. We discard predictions with confidence lower than
a threshold δp and perform a majority voting among the
remaining predictions to define the video label. From all
videos, we only keep those that have at least one frame with
a minimum confidence. We set the confidence threshold δp
such that p× 100% of videos remain after the thresholding.
We denote the target video set after thresholding as ṼT . For
stage 2, the supervised task on pseudo labeled target videos
is minθV

E ,θV
C

∑
vj∈ṼT

−l̂(vj) · log(CV (EV (Vj ; θ
V
E ); θV ))..

In stage 4, we repeat the process as described above and
re-train the video model on the target data with the updated
pseudo labels from the third stage.

Stage 3 - Class-aware Spatial Alignment. The adver-
sarial learning for domain discrimination in the first stage
aligns features from different domains globally, but not
within each category. In this case, target samples in a cat-
egory A can be incorrectly aligned with source samples in
a different category B. This would lead to inferior classi-
fication performance of the target classifier. To evade this
misalignment, we perform class-aware domain alignment
in the third stage between the source web images and the
target video frames. Since the source data consists exclu-
sively of images, we apply alignment on the spatial model
between images and frames. Furthermore, as the target
data is unlabeled, in order to align features across both
domains within each category, we generate pseudo labels
by the model ϕV from the second stage to provide cate-
gory knowledge. Specifically, we use the video model to
generate video-level labels that we disseminate into frame-
level labels. To align images and video frames we use
cross-domain contrastive learning by maximizing the sim-
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Figure 1. Cycle Domain Adaptation (CycDA) pipeline: we address image-to-video adaption by training a spatial model and a spatio-
temporal model alternately, passing pseudo labels to supervise each other in a cycle. The two alternating steps are: (1) domain alignment
on the spatial model with pseudo labels from the spatio-temporal model, and (2) training the spatio-temporal model with updated pseudo
labels from the spatial model.
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Figure 2. Our CycDA framework alternates between spatial alignment (stage 1 and 3) and spatio-temporal learning (stage 2 and 4). See
text for details.

ilarity between samples across domains of the same class
and minimizing the similarity between samples from differ-
ent classes. We use z = EI(i; θIE) to denote the feature
computed by the feature extractor on image i. The set of
source image features is ZI

S = {EI(i; θIE)|i ∈ IS} and the
set of target frame features is ZF

T = {EI(vF ; θIE)|vF ∈
V F
T }. During training, for each pseudo labeled target sam-

ple zFj ∈ ZF
T , we randomly choose two samples from the

source domain: a positive sample of the same label and a
negative sample of a different label, i.e. zIj +, z

I
j − ∈ IS .

The contrastive loss is formulated as LCONTR(IS , V
F
T ) =

−
∑

zF
j ∈ZF

T
log

h(zF
j ,zI

j +)

h(zF
j ,zI

j +)+h(zF
j ,zI

j −)
. Following [3], we

set h(u, v) = exp(sim(u, v)/τ), where we use the cosine
similarity sim(u, v) = uTv/(∥u∥∥v∥) and τ is the temper-
ature parameter. Thus, the objective of stage 3 on the image
model is minθI

E ,θI
C
LCE(IS) + LCONTR(IS , V

F
T ).

Cycling of the Stages. The pseudo labels from the video
model are exploited for class-aware domain alignment on
the image model (stage 3) and the updated pseudo labels
from the image model can supervise the training of the
video model (stage 4). In this manner, stage 3 and stage
4 can be performed iteratively.

Mixed-source Video Adaptation. Image-to-video DA ap-

plies to the case where the source domain consists only of
web images. However, other possible settings presume lim-
ited amount of annotated videos with the domain shift to
the target videos. We refer to this case as mixed-source
video adaptation. CycDA can be adjusted for this setting
as follows. We denote the labeled source video domain as
VS = {(vj , l(vj))|

NV
S

j=1}. For the class-agnostic (stage 1) and
class-aware domain alignment (stage 3) stages we replace
the source image domain {IS} by the mixed-source domain
data {IS , FS} which consists of web images and frames
sampled from source videos. The supervised classification,
adversarial domain discrimination and cross-domain con-
trastive learning are adapted accordingly. For the spatio-
temporal learning of the video model ϕV (stage 2 and 4) we
include additional supervised classification w.r.t. the ground
truth labels for the source videos, therefore the overall loss
is LCE(VS) + L̂CE(ṼT ). In this case, the annotated source
videos are utilized to regularize domain alignment on the
image model, and provide further supervision for learning
the classification task on the video model. In Table 1, we
demonstrate that in the context of mixed-source video adap-
tation, even a limited amount of source videos are sufficient
to achieve results competitive to video-to-video adaptation
approaches that employ the entire source video dataset.



DA setting method
video

backbone
source data U→H H→U

web
image

videos (U or H)
in %

A: video-to-video

AdaBN [15] ResNet101 - 100% 75.5 77.4
MCD [22] ResNet101 - 100% 74.4 79.3
TA3N [2] ResNet101 - 100% 78.3 81.8
ABG [17] ResNet101 - 100% 79.1 85.1
TCoN [20] ResNet101 - 100% 87.2 89.1
DANN [10] I3D - 100% 80.7 88.0
TA3N [2] I3D - 100% 81.4 90.5
SAVA [4] I3D - 100% 82.2 91.2

MM-SADA [19] I3D - 100% 84.2 91.1
CrossModal [13] I3D - 100% 84.7 92.8

CoMix [21] I3D - 100% 86.7 93.9

B: frame-to-video CycDA I3D - one frame 83.3 80.4

C:
mixed-source

to video CycDA I3D

BU* 0% 77.8 88.6
BU* 5% 82.2 93.1
BU* 10% 82.5 93.5
BU* 50% 84.2 95.2
BU* 100% 88.1 98.0

supervised target I3D - - 94.4 97.0

Table 1. Results of Cycle Adaption on UCF-HMDB in comparison to video-to-video adaptation (case A) approaches. For frame-to-video
adaptation (case B), we use only one frame from each source video to adapt to target videos. For mixed-source video adaptation (case C),
we combine BU101 web images and source videos as the source data. *We sample 50 web images per class from 12 classes in BU101.

Method Backbone E→H S→U B→U

source only ResNet18 37.2 76.8 54.8

DANN [10]* ResNet18 39.6 80.3 55.3
UnAtt [14] ResNet101 - - 66.4

HiGAN [28] ResNet50, C3D 44.6 95.4 -
SymGAN [27] ResNet50, C3D 55.0 97.7 -

CycDA (1 iteration) ResNet50, C3D 56.6 98.0 -

DANN [10]+I3D* ResNet18, I3D 53.8 97.9 68.3
HPDA [1]* ResNet50, I3D 38.2 40.0 -

CycDA (1 iteration) ResNet18, I3D 60.5 99.2 69.8
CycDA (2 iterations) ResNet18, I3D 60.3 99.3 72.1
CycDA (3 iterations) ResNet18, I3D 62.0 99.1 72.6

supervised target ResNet18, I3D 83.2 99.3 93.1

Table 2. Results on EADs→HMDB51 (13 classes),
Stanford40→UCF101 (12 classes) and BU101→UCF101
(101 classes), averaged over 3 splits. * denotes our evaluation.

3. Experiments

We evaluate on 3 image-to-video action recognition
benchmark settings: Stanford40 → UCF101 (12 classes),
EADs→HMDB51 (13 classes) and BU101→UCF101 (101
classes). Besides, we perform frame-to-video adaptation
and mixed-source to video adaptation on the UCF-HMDB
dataset, which is a benchmark for video-to-video DA.

Image-to-video DA. We compare the proposed approach to
other image-to-video adaptation methods on the three de-
scribed benchmark settings as shown in Table 2. We report
the CycDA performance for the first three iterations. Our
CycDA outperforms all other approaches already after the
first iteration. Except for the saturation on S→U, running
CycDA for more iterations leads to a further performance

boost on all evaluation settings.

Frame-to-video DA. We further explore the potential of
CycDA on frame-to-video adaptation (Table 1) on UCF-
HMDB, which is a benchmark for video-to-video DA. In-
stead of directly using the source videos, we use only one
frame from each source video to adapt to target videos.
On U→H, CycDA (83.3%) can already outperform video-
to-video adaptation approaches TA3N [2] (81.4%) and
SAVA [4] (82.2%). On H→U, our source domain contains
only 840 frames from the 840 videos in the HMDB training
set on UCF-HMDB, which leads to an inferior performance.
We show that this can be easily addressed by adding auxil-
iary web data in Mixed-source to video DA (Table 1).

Mixed-source to video DA. For mixed-source to video
adaptation (Table 1), we use the source and target videos
on UCF-HMDB, and extend the source domain with web
images of the 12 corresponding action classes in BU101.
To validate the efficacy of CycDA, we only sample 50 web
images per class as auxiliary training data. First, by training
with only sampled web images (without any source videos),
we achieve baseline results of 77.8% (BU→H) and 88.6%
(BU→U). By adding only 5% of videos to the mixed-source
domain, we already achieve performance comparable to the
video-to-video adaptation methods, i.e. 82.0% (BU+U→H)
and 93.1% (BU+H→U). As web images are more informa-
tive than sampled video frames, using web images as aux-
iliary training data can thus significantly reduce the amount
of videos required. Finally, with sampled web images and
all source videos, we outperform all video-to-video adapta-
tion methods, even exceeding the supervised target model
for BU+H→U by 1%.
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