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Abstract

More data is expected to help us generalize to a task. But real datasets can contain
out-of-distribution (OOD) data; this can come in the form of heterogeneity such
as intra-class variability but also in the form of temporal shifts or concept drifts.
We demonstrate a counter-intuitive phenomenon for such problems: generalization
error of the task can be a non-monotonic function of the number of OOD samples;
a small number of OOD samples can improve generalization but if the number of
OOD samples is beyond a threshold, then the generalization error can deteriorate.
We also show that if we know which samples are OOD, then using a weighted
objective between the target and OOD samples ensures that the generalization error
decreases monotonically. We demonstrate and analyze this phenomenon using
linear classifiers on synthetic datasets and medium-sized neural networks on vision
benchmarks such as MNIST, CIFAR-10, CINIC-10, PACS, and DomainNet, and
observe the effect data augmentation, hyperparameter optimization, and pre-training
have on this behavior.

1 Introduction

We procure more data to improve generalization. The central assumption behind doing so—that we
have baked into learning theory (Vapnik, 1998)—is that this data comes from the desired task. But
this may not always be the case. Real data is often heterogeneous (Quinonero-Candela et al., 2008),
this heterogeneity can arise from nuisances which are variables that do not inform the task at hand
(say classification), e.g., geometric nuisances such as viewpoint, or semantic ones such as chairs of
different shapes. Datasets curated at the Internet-scale Srivastava et al. (2022) may also be susceptible
to erroneous annotations (resulting in label noise) (Frénay & Verleysen, 2013) or data poisoning
attacks (Steinhardt et al., 2017). Such “out-of-distribution” (OOD) data, i.e., data that does not come
from our desired task, can be detrimental to the performance of the learned model. In this work, we
aim to study how OOD samples within datasets impact the generalization error on our desired task.
Our contributions are as follows.

We demonstrate a counter-intuitive phenomenon: generalization error on the target task is
non-monotonic in the number of OOD samples. In other words, there exist situations when a
small number of OOD samples can improve the generalization error but if the number of OOD
samples is beyond a threshold, then the generalization error deteriorates. This phenomenon is counter
intuitive because one would expect the generalization error of the target task to deteriorate or improve
monotonically upon the introduction of OOD samples. Our investigation shows that the threshold is
different for different tasks and different neural architectures.

We present empirical evidence for the presence of non-monotonic trends in target gen-
eralization error in many popular datasets, ranging from MNIST, CIFAR-10, to PACS and
DomainNet. OOD samples within a curated dataset could lead to worse generalization error on the
task for which the dataset was curated. We show that when OOD samples in the dataset are unknown,
using strategies such as data-augmentation, hyperparameter optimization and pre-training, are not
effective in eliminating the adverse impact of OOD data.

We develop an algorithmic procedure to train on the target task that is resilient to OOD
data. If we know which samples within the dataset are OOD, e.g., using a two-sample test to check
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for changes in the distribution (Gretton et al., 2012), then we could mitigate the non-monotonic nature
of the generalization error by ignoring the OOD samples. We show how one can do better: using
a weighted objective between the target and OOD samples, we can ensure that the generalization
error on the target task decreases monotonically with the number of OOD samples. We empirically
demonstrate the utility of this weighted objective on a variety of problems.

2 Generalization error is non-monotonic in the number of OOD samples

We define a task P as a joint distribution over the input domain X and the output domain Y . We
model the heterogeneity in the dataset as two distributions: n samples drawn from a target task Pt
and m samples drawn from an out-of-distribution (OOD) task Po. We would like to minimize the
generalization error et(h) = E(x,y)∼Pt

[h(x) 6= y] on the target task. In order to do so, we may find a
hypothesis that minimizes the empirical loss

ê(h) =
1

n+m

n+m∑
i=1

` (h(xi), yi) , (1)

using the dataset {(xi, yi)}n+m
i=1 ; here ` measures the mismatch between the prediction h(xi) and label

yi. If Pt = Po, then et(h) − ê(h) = O((n + m)−1/2) (Smola & Schölkopf, 1998). But if Pt 6= Po,
then we should expect that error on Pt of a hypothesis obtained by minimizing the average empirical
loss can be sub-optimal, especially when the number of OOD samples m� n.

2.1 An example using Fisher’s Linear Discriminant

Consider a binary classification problem with one-dimensional inputs in Fig. 1. Target samples are
drawn from a Gaussian mixture model (with means {−µ, µ} for the two classes) and OOD samples
are drawn from a Gaussian mixture with means {−µ+ ∆, µ+ ∆}; also see Appendix A.1. Fisher’s
linear discriminant (FLD) is a linear classifier for such binary classification problems. It computes

ĥ(x) =

{
1, ω>x > c

0, otherwise,
where ω is a projection vector which acts as a feature extractor and c is a threshold that performs
one-dimensional discrimination between the two classes. FLD assumes that the class conditional
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Figure 1: Left: A picture of synthetic target and OOD tasks. Middle: A schematic of the Gaussian mixture
model corresponding to the target task (top) and the OOD samples (bottom). The OOD sample size (m = 28)
at which the target generalization error is minimized at ∆ = 1.6 is indicated at the top. Right: For n = 100,
we plot the generalization error of FLD on the target task as a function of the ratio of OOD and target samples
m/n, for different types of OOD samples corresponding to different values of ∆. This plot uses the analytical
expression for the generalization error in (2); see Appendix A.6 for a numerical simulation study. For small
values of ∆, when the two tasks are similar to each other, the generalization error et(h) decreases monotonically.
However, beyond a certain value of ∆, the generalization error is non-monotonic in the number of OOD samples.
The optimal value ofm/n which leads to the best generalization error is a function of the relatedness between
the two tasks, as governed by ∆ in this example. This non-monotonic behavior can be explained in terms of a
bias-variance tradeoff with respect to the target task: a large number of OOD samples reduces the variance but
also results in a bias with respect to the optimal hypothesis of the target task.
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density of each class is a multivariate Gaussian distribution with the same covariance structure. We
provide a detailed account of FLD in Appendix A.2.

Suppose we fit a FLD on a dataset which comprises of n target samples and m OOD samples.
Also, suppose we do not know which samples are OOD and believe that all the samples in the dataset
come from a single target distribution. For univariate data, the FLD decision rule reduces to,

ĥ(x) =

{
1, x > µ̂0+µ̂1

2

0, otherwise.
Define the decision threshold to be ĉ = (µ̂0 + µ̂1)/2. We can calculate (Appendices A.2 and A.3) an
analytical expression for the generalization error of FLD on the target task:

et(ĥ) =
1

2

[
Φ

(
m∆− (n+m)µ√

(n+m)(n+m+ 1)

)
+ Φ

(
−m∆− (n+m)µ√
(n+m)(n+m+ 1)

)]
; (2)

here Φ is the CDF of the standard normal distribution.
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Figure 2: Mean squared error (MSE)
(Y-axis) of the decision threshold ĉ of
FLD (see Appendix A.3), for the same
setup as that of Fig. 1, plotted against
the ratio of the OOD and target samples
m/n (X-axis) for ∆ = 1.8. Squared
bias and variance of the MSE are in
violet and blue, respectively. This il-
lustration clearly demonstrates the intu-
ition behind non-monotonic target error:
the MSE drops initially because of the
smaller variance due to the OOD sam-
ples. As more OOD samples are added,
MSE increases due to the increasing
bias. Non-monotonic trend in MSE of ĉ
translates to a similar trend in the target
generalization error (0-1 loss).
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Figure 3: We can control the Bayes
optimal error by adjusting µ, σ of the
Gaussian mixture model in §2.1. As dis-
cussed in Remark 2, when the Bayes op-
timal error is large for (µ = 6, σ = 16),
we can observe non-monotonic trends
even for a large number of target sam-
ples (n = 500). This suggests that
non-monotonic trends in generalization
are not limited to small sample sizes.

Fig. 1 (right) shows how the generalization error et(ĥ)

decreases up to some threshold of the ratio between the number
of OOD samples and the number of samples from the target
task m/n and then increases beyond that. This threshold is
different for different values of ∆ as one can see in (2) and Fig. 1
(right). This behavior is surprising because one would a priori
expect the generalization error to deteriorate monotonically as
the number of OOD samples m increases. The fact that such
a non-monotonic trend is observed even for a one dimensional
Gaussian mixture model and Fisher’s Linear Discriminant
suggests that this may be a general phenomenon. We can
capture this discussion as a theorem with our FLD example
above as the proof.

Theorem 1. There exist target and OOD tasks, Pt and Po
respectively, such that the generalization error on the target task
of the hypothesis that minimizes the empirical risk in (1) is
non-monotonic in the number of OOD samples.

Remark 2 (An intuitive explanation of non-monotonic
trends in generalization error). Suppose that a learning algo-
rithm achieves Bayes optimal error on the target task with high
probability when the target sample size n exceeds N . We argue
that a non-monotonic trend in generalization error is likely to
occur when n < N , i.e., when target generalization error is
higher than the Bayes optimal error. In this case, if we add OOD
samples whose empirical distribution is sufficiently close to that
of the target task, then this would improve generalization by
reducing the variance of the learned hypothesis. But as the OOD
sample size increases, the difference in the two distributions
becomes apparent and this leads to a bias in the choice of the
hypothesis. Fig. 2 illustrates this phenomenon with regards
to our FLD example in Fig. 1, by plotting the mean squared
error of the decision threshold ĉ and its constituent bias and
variance components. Roughly speaking, we may understand
the non-monotonic trend in generalization as a phenomenon
that arises due to the finite number of OOD samples (m/n in
the example above). The distance between the distribution of
the OOD samples and the distribution of the target task (∆
in the example) determines the threshold beyond which the
error is monotonic. Current tools in learning theory (Smola
& Schölkopf, 1998) are fundamentally about understanding
generalization when the number of samples is asymptotically
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Figure 4: Left: Sub-task T2 (Bird vs. Cat) from Split-CIFAR10 is the target task and images of these classes
rotated by different angles θ◦ are the OOD task. WRN-10-2 architecture was used to train the model. We
see non-monotonic curves for larger values of θ◦. For 60◦ and 135◦ in particular, the generalization error at
m/n = 20 is worse than the generalization error with a fewer OOD samples, i.e. OOD samples actively hurt
generalization. See Fig. A5 (left) for a similar experiment involving SmallConv, a much smaller CNN.Middle:
The Split-CIFAR10 binary sub-task T4 (Frog vs. Horse) is the target task and images of these classes subjected
to varying levels of Gaussian blur are the OOD samples. WRN-10-2 architecture was used to train the model.
Non-monotonic curves are observed for larger levels of blur, while for smaller levels of blur, we notice that adding
more OOD data improves the generalization on the target task. Right: Generalization error of two separate
networks, WRN-10-2 and SmallConv, on the target task is plotted against the number of samples from the
OOD task for 3 different pairs of target-OOD tasks from Split-CIFAR10. All the 3 pairs exhibit non-monotonic
target generalization trends across both network models. See Appendices B.2 and B.3 for experimental details
and Appendix B.7 for experiments on more task pairs. Error bars indicate 95% confidence intervals (10 runs).

large—whether they be from the target task or OOD. In future work, we hope to formally characterize
this non-monotonic trend in generalization error by building new learning-theoretic tools.

Even if the non-monotonic trend occurs for relatively small values of target and OOD samples n
andm respectively in Fig. 1, this need not always be the case. If the number of samples N required to
reach Bayes optimal error in the above remark is large, then a non-monotonic trend could occur even
if we have a relatively large target sample size n. If N is small, then the non-monotonic trend would
not occur typically because then the typical target sample size would be n > N . (See Fig. 3)

2.2 Non-monotonic trends for neural networks and real datasets

We experiment with several popular datasets including MNIST, CIFAR-10, PACS, and DomainNet
and 3 different network architectures: (a) a small convolutional network with 0.12M parameters
(denoted by SmallConv), (b) a wide residual network (Zagoruyko & Komodakis, 2016) of depth 10
and widening factor 2 (WRN-10-2), and (c) a larger wide residual network of depth 16 and widening
factor 4 (WRN-16-4). See Appendix B.4 for more details.
Non-monotonic trend in generalization error can occur due to geometric and semantic nui-
sances. Such nuisances are very common even in curated datasets (Van Horn, 2019). We constructed
5 binary classification sub-tasks (denoted by Ti for i = 1, . . . , 5) from CIFAR-10 to study this aspect
(see Appendix B.1). We consider a CIFAR-10 sub-task T2 (Bird vs. Cat) as the target and introduce
rotated images by a fixed angle between 0◦-135◦) as OOD samples. Fig. 4 (left) shows that the
generalization error decreases monotonically for small rotations but it is non-monotonic for larger
angles. Next, we considered the sub-task T4 (Frog vs. Horse) as the target task and generate OOD
samples by adding Gaussian blur of varying levels to images from the same task. In Fig. 4 (middle),
the generalization error on the target is a monotonically decreasing function of the number of OOD
samples for low blur but it increases non-monotonically for high blur.
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Non-monotonic trends can occur when OOD samples are drawn from a different task Large
datasets can contain categories whose appearance evolves in time (e.g., a typical laptop in 2022
looks very different from that of 1992), or categories can have semantic intra-class nuisances (e.g.,
chairs of different shapes). We use CIFAR-10 sub-tasks to study how such differences can lead to
non-monotonic trends (see Appendix B.1). For 5 CIFAR-10 sub-tasks; each sub-task is a binary
classification problem with two consecutive classes: Airplane vs. Automobile, Bird vs. Cat, etc.
We consider (Ti, Tj) as the (target, OOD) task pair and evaluated the trend in generalization error
for all 20 distinct pairs of tasks. Fig. 4 (right) illustrates non-monotonic trends for 3 such pairs;
see Appendix B for more details.
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Figure 5: Non-monotonic trends in target generalization error on three DomainBed benchmarks. Left:
RotatedMNIST (10 classes, 10 target samples/class, SmallConv), Middle: PACS (3 classes {dog, elephant, horse},
10 target samples/class, WRN-16-4), and Right: DomainNet (2 classes {bird, plane}, 25 target samples/class,
WRN-16-4). Error bars indicate 95% confidence intervals (10 runs).
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Non-monotonic trends also occur for benchmark domain gener-
alization datasets We further investigated three widely used bench-
marks in the domain generalization literature. First, we consider the
Rotated MNIST benchmark from DomainBed (Gulrajani & Lopez-
Paz, 2020). We define the 10-way classification of un-rotated MNIST
images as the target task and θ-rotated MNIST images as the OOD
samples. Similar to the previous rotated CIFAR-10 experiment,
we observe non-monotonic trends in target generalization for larger
angles θ. Next, we consider the PACS benchmark from DomainBed
which contains 4 distinct environments: photo, art, cartoon, and
sketch. A 3-way classification task involving photos (real images)
is defined as the target task, and we let the corresponding data
from other environments be the OOD samples. Interestingly, we
observe that when OOD samples consist of sketched images, then
the generalization error on the real images exhibits a non-monotonic
trend. We also observe similar trends in DomainNet, a benchmark
that resembles PACS; see Fig. 5.
Generalization error is not always non-monotonic even when
there is distribution shiftWe considered CINIC-10 (Darlow et al.,
2018), a dataset which was created by combining CIFAR-10 with
images selected and down-sampled from ImageNet. We train a network on a subset of CINIC-10 that
comprises of both CIFAR-10 and ImageNet images. The target task is CIFAR-10 itself, so images
from ImageNet in CINIC-10 act as OOD samples. Fig. 6 demonstrates that having more ImageNet
samples in the training data improves the generalization (monotonic decrease) on the target task, but
at a slower rate than the instance where the training data is purely comprised of target data. This
phenomenon is also demonstrated in Fig. 1: for sufficiently small shifts, the target generalization error
decreases as the number of OOD samples increases.
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Figure 7: Left: Considering CIFAR-10 subtask T2 (Bird vs Cat) as target and T5 (Ship vs Truck) as OOD, we
train a WRN-10-2 network with class-balanced datasets containing fixed number of target samples (n = 100) and
varying number (m) of OOD samples, under the following settings: (1) Vanilla — without any data-augmentation
or pre-training (darkest shade of red), (2) Data augmentations by introducing padding with random cropping and
random left/right flipping (intermediate shade of red), and (3) Pre-training followed by fine-tuning (lightest shade
of red). We pre-train the network on 14000 class-balanced ImageNet images from CINIC-10 (see Appendix B.1)
belonging to Bird and Cat classes which correspond to our hypothetical target task. Pre-training is performed for
100 epochs with a learning rate of 0.01. Next, we employ a two-step strategy of linear probing (first 50 epochs)
and full-fine tuning (last 50 epochs) inspired by Kumar et al. (2022) at a reduced learning rate of 0.001. Note
that this fine-tuning is performed on the combined dataset of n target andm OOD samples. Even though data
augmentation and pre-training followed by fine-tuning reduce the overall error, we still observe the deterioration
of target generalization error as the OOD sample fraction of the dataset increases. Right: For each run at each
value ofm, we perform hyperparameter tuning using Ray (Liaw et al., 2018) over a validation set including only
target samples, and record the target generalization error of the model using the best set of hyperparameters.
However, we still observe the target generalization error degrading as the OOD samples increase. Note that
hyperparameter tuning cannot be implemented in reality because we may not know the identity of the
target and OOD samples. So the fact that the non-monotonic trend persists in the hypothetical instance where
we know the sample identities guarantees that it will occur in practice as well. Error bars indicate 95% confidence
intervals over 10 experiments.

Effect of pre-training, data-augmentation and hyperparameter optimization When we do not
know which samples in the training data are OOD, we do not have a lot of options to mitigate
the deterioration due to the OOD samples. We could employ data augmentations, hyperparameter
optimization, or say pre-training followed by fine-tuning. The second option is difficult to implement
for a real problem because the validation data that will be used for hyperparameter optimization will
itself have to be drawn from the curated dataset.

We tested whether these three techniques above improve generalization on the target task in the
presence of OOD samples. We consider CIFAR-10 sub-task T2 (Bird vs. Cat) as the target task and
T5 (Ship vs. Truck) as the OOD task and train a WRN-10-2 network under various settings. The
effect of these techniques are reported in Fig. 7 and we find that neither of them manages to curb the
deterioration of target generalization error as the OOD sample size of the dataset increases.

3 Can we exploit the non-monotonic trend in the generalization error?

Suppose we knew which samples in our dataset were OOD for the target task. Then we should be
able to not only mitigate the non-monotonic nature of the generalization error but also exploit it.

Theorem 3 (Paraphrased from Ben-David et al. (2010)). For two tasks Pt and Po, let ĥα be the
minimizer of the α-weighted empirical risk êα(h) = αêt(h) + (1− α)êo(h) where êt(h) and êo(h) are
the empirical risks of Pt and Po respectively. The generalization error

et(ĥα) ≤ et(h∗t ) + 4

√(
α2

n
+

(1− α)2

m

)√
VH − log δ + 2(1− α)dH(Pt, Po),

with probability at least 1 − δ. Here h∗t = argminh∈H et(h) is the target error minimizer; VH is a
constant proportional to the VC-dimension of the hypothesis class H and dH(Pt, Po) is a notion of
relatedness between the tasks Pt and Po.
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In other words, if we use an appropriate value of α that makes the second and third terms on the
right-hand side small, then we can mitigate the deterioration of generalization error due to OOD
samples. If the OOD samples are very different from those of the target task, i.e., if d(Pt, Po) is large,
then this theorem suggests that we should pick an α ≈ 1. Doing so effectively ignores the OOD
samples and the generalization error then decreases monotonically as O(n−1/2).

3.1 Choosing the optimal α∗

If we define ρ =
√
VH−log δ
dH(Pt,Po)

to be, roughly speaking, the ratio of the capacity and the distance between
tasks, then a short calculation shows that for α ∈ [0, 1],

α∗ =

1 if n ≥ 4ρ2,
n

n+m

(
1 +

√
m2

4ρ2(n+m)−nm

)
else.

This suggests that if we have a hypothesis space with small VC-dimension or if the OOD samples and
target samples come from very different distributions, then we should train only on the target samples
to obtain optimal error. Otherwise, including the OOD samples after appropriately weighing them
using α∗ can give a better generalization error.

It is not easy to estimate ρ because it depends upon the VC-dimension of the hypothesis class (Ben-
David et al., 2010; Vedantam et al., 2021). But in general, we can treat α as a hyperparameter and use
validation data to search for its optimal value. For our FLD example we can do slightly better: we can
calculate the analytical expression for the generalization error for the hypothesis that minimizes the
α-weighted empirical risk (see Appendices A.4 and A.5) and calculate α∗ by numerically evaluating
the expression for α ∈ [0, 1].
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ically decreases with the number of OOD samples m.
Right: The optimal α∗ that yields the smallest target
generalization error as a function of the number of OOD
samples. Note that α∗ increases as the number of OOD
samples m increases; this increase is more drastic for
large values of ∆ and is more gradual for small values of
∆. Observe that α∗ = 1/2 for all values ofm if ∆ = 0.
See Appendix A.6 for a numerical simulation.

Fig. 8 shows that regardless of the number of
OOD samples (m) and the relatedness between
OOD and target tasks (∆), we can obtain a
generalization error that is always better than that
of a hypothesis trained without OOD samples. In
otherwords, if we chooseα∗ appropriately (Fig. 1
corresponds to choosing α = 1/2), then we do
not suffer from non-monotonic generalization
error on the target task.

3.2 Training neural
networks using the α-weighted objective

In §2.2, for a variety of computer vision datasets,
we found that for some pairs of tasks, the gener-
alization error is non-monotonic in the number
of OOD samples. We now show that if we knew
which samples were OOD, then we can rectify
this trend using an appropriate value of α∗ to
weigh the samples differently. In Fig. 9, we track
the test error of the target task for three cases:
training is agnostic to the presence of OOD sam-
ples (red), the learner knows which samples are
OOD and uses an α = 1/2 in the weighted risk
to train (yellow, we call this “naive”), and when
it uses an optimal value of α using grid-search
(green). Searching over α improves the test error on all these 3 pairs of target-OOD tasks. See Figs. A3
to A5 for more experiments with similar conclusions.

We also conducted another experiment to check if augmentation can help rectify the non-monotonic
trend in the generalization error, using the α-weighted objective, i.e., when we know which samples
are OOD. As shown in Fig. 10, in this case even naively weighing the objective (α = 1/2, yellow)
can rectify the non-monotonic trend, using the optimal α∗ (green) further improves the error. This
suggests that if augmentation is an effective way to mitigate non-monotonic behavior, but if we use
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Figure 9: Here we present three settings: minimizing the average risk over target and OOD samples is agnostic
to OOD samples present (red), minimizing the sum of the average loss of the target and OOD tasks which
corresponds to α = 1/2 (yellow), minimizing an optimally weighted convex combination of the target and OOD
empirical loss (green). The last two settings are only possible when one knows which samples are OOD. For
each setting, we plot the generalization error on the target task against the number of OOD samples for (target,
OOD) pairs from PACS (Left) and CIFAR-10 subtasks (Middle). Unlike in CIFAR-10 task pairs, we observe
that in PACS, the target generalization error has a downward trend when α = 0.5 (yellow line, left panel). We
speculate that this could be due to the similarity between the target and OOD tasks, which causes the model to
generalize to the target even at a naive weight. Right: The optimal α∗ obtained via grid search for the three
problems in the middle column plotted against different number of OOD samples. The value of α∗ lies very
close to 1 but it is never exactly 1. In other words, if we use the weighted objective in Theorem 3 then we always
obtain some benefit, even if it is marginal when OOD samples are very different from those of the target. Error
bars indicate 95% confidence intervals over 10 experiments.

the α-weighted objective, which requires knowing which samples are OOD. As we discussed in Fig. 7
if we do not know which samples are OOD, then augmentation does not help.
Sampling mini-batches during training For m � n, mini-batches that are sampled uniformly
randomly from the dataset will be dominated by OOD samples. As a result, the gradient even if it is
still unbiased, is computed using very few samples from the target task. This leads to an increase in
the test error, which is particularly noticeable with α∗ chosen appropriately after grid search. We
therefore use a biased sampling procedure where each mini-batch contains a fraction β samples
from the target task and the remainder 1− β consists of OOD samples. This parameter controls the
bias and variance of the gradient of the target task (β = n

n+m gives unbiased gradients with respect
to the unweighted total objective and high variance with respect to the target task when m � n,
see Appendix B.5). We found that both β = {0.5, 0.75} improve test error.
Weighted objective for over-parameterized networks It has been argued previously that weighted
objectives are not effective for over-parameterized models such as deep networks because both
surrogate losses êt(h) and êo(h) are zero when the model fits the training dataset (Byrd & Lipton,
2019). It may therefore seem that the weighted objective in Theorem 3 cannot help us mitigate the
non-monotonic nature of the generalization error; indeed the minimizer of αêt(h) + (1− α)êo(h) is
the same for any α if the minimum is exactly zero. Our experiments suggest otherwise: the value of α
does impact the generalization error—even for deep networks. This is perhaps because even if the
cross-entropy loss is near-zero for a deep network towards the end of training, it is never exactly zero.

4 Related Work

Distribution shift (Quinonero-Candela et al., 2008) and its variants such as covariate shift (Ben-David
& Urner, 2012; Reddi et al., 2015), concept drift (Mohri & Muñoz Medina, 2012; Bartlett, 1992;
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Cavallanti et al., 2007), domain shift (Gulrajani & Lopez-Paz, 2020; Sagawa et al., 2021; Ben-David
et al., 2010), sub-population shift (Santurkar et al., 2020; Hu et al., 2018; Sagawa et al., 2019), data
poisoning (Yang et al., 2017; Steinhardt et al., 2017), geometric and semantic nuisances (Van Horn,
2019), and flawed annotations (Frénay & Verleysen, 2013) can lead to the presence of OOD samples
in a curated dataset, and thereby may yield sub-optimal generalization error on the desired task. While
these problems have primary been studied in the sense of an out-of-domain distribution, we believe
that we have identified a fundamentally different phenomenon, namely a non-monotonic trend in the
generalization error due to the different numbers of OOD samples.
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Figure 10: Effect of data augmentation
(padding with random cropping and random
left/right flipping). Although the network
trained in the setting where the OOD sample
identities are unknown (red) continues to per-
form poorly with lots of OOD samples, even
a naive weighing of the target and OOD loss
(α = 1/2) is enough to provide a monotoni-
cally decreasing error (yellow)when theOOD
sample identities are known. This suggests
that data augmentation can mitigate some of
the anomalies that arise from OOD data, al-
though we can do better by addressing them
specifically using, for instance, the weighted
objective (green). Error bars indicate 95%
confidence intervals over 10 experiments.

Domain Adaptation While most works listed above
provide attractive ways of adapting or being robust to
various modes of shift, a part of our work addresses the
question: if we know which samples are OOD, then can
we optimally utilize them to achieve a better generalization
on the desired target task? This is related to domain
adaptation (Ben-David et al., 2010; Mansour et al., 2008;
Pan et al., 2010; Ganin et al., 2016; Cortes et al., 2019).
A large body of work uses weighted-ERM based methods
for domain adaptation (Ben-David et al., 2010; Zhang
et al., 2012; Blitzer et al., 2007; Bu et al., 2022; Hanneke
& Kpotufe, 2019; Redko et al., 2017; Wang et al., 2019;
Ben-David et al., 2006); this is either done to address
domain shift or to address different distributions of tasks in
a transfer or multi-task learning. This body of work is our
primary motivation, except that in our case, the “source”
task is actually the OOD samples.

Connection with the theory of domain adaptation
While generalization bounds for weighted-ERM like those
of Ben-David et al. (2010) are understood to be meaningful
(if not tight; see Vedantam et al. (2021)) for large sample
sizes, our work identifies an unusual non-monotonic trend
in the generalization error of the target task. First note that
the calculations in Ben-David et al. (2010) can be used
when we do not know the identity of the OOD samples
by setting α = n

n+m . One can get an insight into the
non-monotonic trend of the target error from Theorem
3 in Ben-David et al. (2010) because the second term
4

√(
α2

n +
(1−α)2

m

)√
VH − log δ decreases with increasing m while the third term 2(1− α)dH(Pt, Po)

increases because α → 0. While such a trend in the upper bound does not directly imply a non-
monotonic trend in the error itself, this discussion suggests that the results from our experiments are
not inconsistent with existing theory. There is a discrepancy here, e.g., we notice that Ben-David et al.
(2010)’s upper bound for naively weighted empirical error (α = 1/2) does not have a non-monotonic
trend (again, this is only an upper bound on the target error). A more recent paper by Bu et al. (2022)
presents an exact characterization of the target generalization error using conditional symmetrized
Kullback-Leibler information between the output hypothesis and target samples given the source
samples. While they do not identify non-monotonic trends in target generalization error, their tools
can potentially be useful to characterize the phenomenon discovered in our work.

Domain Generalization seeks to learn a predictor from multiple domains that could perform well
on some unseen test domain. This unseen test domain can be thought as OOD data. Since no
training data is available during the training, the learner needs to make some additional assumptions;
one popular assumption is to learn invariances across training and testing domains (Gulrajani &
Lopez-Paz, 2020; Arjovsky et al., 2019; Sun & Saenko, 2016). We use several benchmark datasets
from this literature, but the goals of this body of work and ours are very different because we are
interested only in generalizing on the target task, not generalizing to the domain of the OOD samples.

9



References
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Peter L Bartlett. Learning with a slowly changing distribution. In Proceedings of the fifth annual
workshop on Computational learning theory, pp. 243–252, 1992.

Shai Ben-David and Ruth Urner. On the hardness of domain adaptation and the utility of unlabeled
target samples. In International Conference on Algorithmic Learning Theory, pp. 139–153. Springer,
2012.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for
domain adaptation. Advances in neural information processing systems, 19, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman. Learning
bounds for domain adaptation. Advances in neural information processing systems, 20, 2007.

Yuheng Bu, Gholamali Aminian, Laura Toni, Gregory W Wornell, and Miguel Rodrigues. Charac-
terizing and understanding the generalization error of transfer learning with gibbs algorithm. In
International Conference on Artificial Intelligence and Statistics, pp. 8673–8699. PMLR, 2022.

Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In
International Conference on Machine Learning, pp. 872–881, 2019.

Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Tracking the best hyperplane with a
simple budget perceptron. Machine Learning, 69(2):143–167, 2007.

Corinna Cortes, Mehryar Mohri, and Andrés Munoz Medina. Adaptation based on generalized
discrepancy. The Journal of Machine Learning Research, 20(1):1–30, 2019.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet or
cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. IEEE
transactions on neural networks and learning systems, 25(5):845–869, 2013.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, 17(1):2096–2030, 2016.

Muhammad Ghifary, W Bastiaan Kleĳn, Mengjie Zhang, and David Balduzzi. Domain generalization
for object recognition with multi-task autoencoders. In Proceedings of the IEEE international
conference on computer vision, pp. 2551–2559, 2015.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Steve Hanneke and Samory Kpotufe. On the value of target data in transfer learning. Advances in
Neural Information Processing Systems, 32, 2019.

Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust supervised
learning give robust classifiers? In International Conference on Machine Learning, pp. 2029–2037.
PMLR, 2018.

10



Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with multiple
sources. Advances in neural information processing systems, 21, 2008.

Mehryar Mohri and Andres Muñoz Medina. New analysis and algorithm for learning with drifting
distributions. In International Conference on Algorithmic Learning Theory, pp. 124–138. Springer,
2012.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. IEEE transactions on neural networks, 22(2):199–210, 2010.

Xingchao Peng, Qinxun Bai, Xide Xia, Zĳun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406–1415, 2019.

Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. Dataset
shift in machine learning. Mit Press, 2008.

Sashank Reddi, Barnabas Poczos, and Alex Smola. Doubly robust covariate shift correction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
optimal transport. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 737–753. Springer, 2017.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya
Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, et al. Extending the wilds benchmark
for unsupervised adaptation. arXiv preprint arXiv:2112.05090, 2021.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation
shift. arXiv preprint arXiv:2008.04859, 2020.

Alex J Smola and Bernhard Schölkopf. Learning with kernels, volume 4. 1998.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
Advances in neural information processing systems, 30, 2017.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European conference on computer vision, pp. 443–450. Springer, 2016.

Grant Richard Van Horn. Towards a Visipedia: Combining Computer Vision and Communities of
Experts. PhD thesis, California Institute of Technology, 2019.

11



Vladimir Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation of
domain generalization with empirical risk minimizers. Advances in Neural Information Processing
Systems, 34:28131–28143, 2021.

Boyu Wang, Jorge Mendez, Mingbo Cai, and Eric Eaton. Transfer learning via minimizing the
performance gap between domains. Advances in Neural Information Processing Systems, 32, 2019.

Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning attack method against neural
networks. arXiv preprint arXiv:1703.01340, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning Through Synaptic Intelligence.
In International Conference on Machine Learning, pp. 3987–3995, 2017.

Chao Zhang, Lei Zhang, and Jieping Ye. Generalization bounds for domain adaptation. Advances in
neural information processing systems, 25, 2012.

12



A Fisher’s Linear Discriminant (FLD)

A.1 Synthetic Tasks

The target task Pt and the OOD task Po are both binary classification problems with one-dimensional
inputs. In both tasks, each class is sampled from a univariate Gaussian distribution. The OOD task is
the target task translated by ∆. In summary, the target task has the class conditional densities,

ft,0
d
= N (−µ, σ2)

ft,1
d
= N (+µ, σ2),

while the OOD task distribution has the class conditional densities,
fo,0

d
= N (∆− µ, σ2)

fo,1
d
= N (∆ + µ, σ2).

We also assume that both the target and OOD tasks have the same label distribution with equal class
prior probabilities, i.e. p(yt = 1) = p(yo = 1) = π = 1

2 . Fig. 1 (left) depicts Pt and Po pictorially.

A.2 OOD-Agnostic Fisher’s Linear Discriminant

In this section, we derive FLD when we have samples from a single task – which is also applicable to
the OOD-agnostic (when the identity of the OOD samples are not known) setting. Consider a binary
classification problem with Dt = {(xi, yi)}ni=1 ∼ Pt where xi ∈ X ⊆ Rd and yi ∈ Y = {0, 1}.

Let fk and πk be the conditional density and prior probability of class k (k ∈ {0, 1}) respectively.
The probability that x belongs to class k is

p(y = k | x) =
πkfk(x)

π0f0(x) + π1f1(x)
,

and the maximum a posteriori estimate of the class label is
h(x) = argmax

k∈{0,1}
p(y = k | x) = argmax

k∈{0,1}
log(πkfk(x)). (3)

Fisher’s linear discriminant (FLD) assumes that each fk is a multivariate Gaussian distribution
with the same covariance matrix Σ, i.e,

fk(x) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µk)>Σ−1(x− µk)

)
.

Under this assumption, the joint-density f of (x, y) becomes,

f(x, y) ∝
1∏
k=0

[
πk
|Σ|1/2

exp

(
− 1

2
(x− µk)>Σ−1(x− µk)

)]1[y=k]

Therefore, the log-likelihood l(µ0, µ1,Σ, π0, π1) over Dt is given by,

`(µ0, µ1,Σ, π0, π1) =

1∑
k=0

∑
(x,y)∈Dt,k

[
log πk −

1

2
log |Σ| − 1

2
(x− µk)>Σ−1(x− µk)

]
+ const.

where Dt,k is the set of samples of Dt that belongs to class k. Based on the likelihood function above,
we can obtain the maximum likelihood estimates µ̂k, Σ̂, π̂k. The expression for the estimate µ̂k is

µ̂k =
1

|Dt,k|
∑

(x,y)∈Dt,k

x. (4)

Plugging these estimates into (3), we get,

ĥ(x) = argmax
k∈{0,1}

[
log π̂k −

1

2
log |Σ̂| − 1

2
(x− µ̂k)>Σ̂−1(x− µ̂k)

]
= argmax
k∈{0,1}

[
log π̂k −

1

2
log |Σ̂|+ x>Σ̂−1µ̂k −

1

2
µ̂>k Σ̂−1µk

]

13



Therefore, ĥ(x) = 1 iff,

x>Σ̂−1µ̂1 −
1

2
µ̂>1 Σ̂−1µ1 + log π̂1 > x>Σ̂−1µ̂0 −

1

2
µ̂>0 Σ̂−1µ0 + log π̂0

x>Σ̂−1µ̂1 − x>Σ̂−1µ̂0 >
1

2
µ̂>1 Σ̂−1µ1 −

1

2
µ̂>0 Σ̂−1µ0 + log π̂0 − log π̂1

(Σ̂−1(µ̂1 − µ̂0))>x > (Σ̂−1(µ̂1 − µ̂0))>
(
µ̂0 + µ̂1

2

)
+ log

π̂0

π̂1

Hence the FLD decision rule ĥ(x) is

ĥ(x) =

{
1, ω>x > c

0, otherwise

where ω = Σ̂−1(µ̂1 − µ̂0) is a projection vector and c = ω>
( µ̂0+µ̂1

2

)
+ log π̂0

π̂1
is a threshold. When

d = 1 and π0 = π1, the decision rule reduces to

ĥ(x) =

{
1, x > µ̂0+µ̂1

2

0, otherwise
(5)

A.3 Deriving the Generalization Error of the Target Task for Synthetic Tasks with FLD

We would like to derive an expression for the average generalization error of the target task, when we
consider the synthetic tasks described in Appendix A.1. For simplicity, we set the variance σ2 of the
class conditional densities of the synthetic tasks to 1.

In the OOD-agnostic setting, the learning algorithm sees a single dataset D = Dt ∪Do of size
n + m which is a combination of both target and OOD samples. We can estimate µk using (4) to
obtain

µ̂k =
1

|Dk|
∑

(x,y)∈Dk

x =

∑
(x,y)∈Dt,k

x+
∑

(x,y)∈Do,k
x

nk +mk

=
nkx̄t,k +mkx̄o,k

nk +mk

=
nx̄t,k +mx̄o,k

n+m
.

(6)

whereDk is the set of samples ofD that belongs to class k, nk = |Dt,k| andmk = |Do,k| for k ∈ {0, 1}.
x̄t,k and x̄o,k denote the sample means of class k in target and OOD datasets respectively. We assume
that π = 1

2 from which it follows that nk = nπk = n
2 and mk = mπk = m

2 . We cannot explicitly
compute x̄t,k and x̄o,k when the OOD samples are not explicitly known, because we cannot separate
target samples from OOD samples in D.

Since the samples are drawn from Gaussians, their averages also follow Gaussian distributions.
Hence, the threshold ĉ = µ̂0+µ̂1

2 of the hypothesis ĥ, estimated using FLD, is a random variable with
a Gaussian distribution i.e., ĉ ∼ N (µh, σ

2
h) where

µh = E[ĉ] =
m∆

n+m
,

σ2
h = Var[ĉ] =

1

n+m
.

The target error of a hypothesis ĥ is

p(ĥ(x) 6= y | x, ĉ) =
1

2
px∼ft,1 [x < ĉ] +

1

2
px∼ft,0 [x > ĉ]

=
1

2
+

1

2
px∼ft,1 [x < ĉ]− 1

2
px∼ft,0 [x < ĉ]

=
1

2

[
1 + Φ(ĉ− µ)− Φ(ĉ+ µ)

]
(7)
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Using (7), the expected error on the target task et(ĥ) = Eĉ∼N (µh,σ2
h)[p(ĥ(x) 6= y | x, ĉ)] is given by,

et(ĥ) =

∫ ∞
−∞

1

2

[
1 + Φ(ĉ− µ)− Φ(ĉ+ µ)

] 1

σh
φ

(
ĉ− µh
σh

)
dĉ

=

∫ ∞
−∞

1

2

[
1 + Φ(yσh + µh − µ)− Φ(yσh + µh + µ)

]
φ(y)dy

=
1

2

[
Φ

(
µh − µ√

1 + σ2
h

)
+ Φ

(
−µh − µ√

1 + σ2
h

)]
In the last equality, we make use of the identity

∫∞
−∞ Φ(cx+ d)φ(x)dx = Φ

(
d√

1+c2

)
where φ and Φ

are the PDF and CDF of the standard normal. Substituting the expressions for µh, σ2
h into the above

equation, we get

et(ĥ) =
1

2

[
Φ

(
m∆− (n+m)µ√

(n+m)(n+m+ 1)

)
+ Φ

(
−m∆− (n+m)µ√
(n+m)(n+m+ 1)

)]
(8)

For synthetic tasks with σ2 6= 1, the target generalization error can be obtained by simply replacing µ
and ∆ with µ

σ and ∆
σ respectively in (8).

A.4 OOD-Aware Weighted Fisher’s Linear Discriminant

We consider a target dataset Dt = {(xi, yi)}ni=1 and an OOD dataset Do = {(xi, yi)}mi=1, which are
samples from the synthetic tasks from Appendix A.1. This setting differs from Appendix A.3 since we
know whether each sample from D = Dt ∪Do is OOD or not. This difference allows us to consider a
log-likelihood function that weights the target and OOD samples differently, i.e. we consider

`(µ0, µ1, σ
2
0 , σ

2
1) =

1∑
k=0

(
α

∑
(x,y)∈Dt,k

[
− log σk −

(x− µk)2

2σ2
k

]
+ (1− α)

∑
(x,y)∈Do,k

[
− log σk −

(x− µk)2

2σ2
k

])
+ const. . (9)

α is a weight that controls the contribution of the OOD samples in the log-likelihood function. Under
the above log-likelihood, the maximum likelihood estimate for µk is

µ̂k =
α
∑

(x,y)∈Dt,k
x+ (1− α)

∑
(x,y)∈Do,k

x

α|Dt,k|+ (1− α)|Do,k|
. (10)

We can make use of the above µ̂k to get a weighted FLD decision rule using (5).

A.5 Deriving the Generalization Error of the Target Task for Synthetic Tasks with
Weighted FLD

We consider the synthetic tasks in Appendix A.1 with σ2 = 1. We re-write µ̂k from (10) using
notation from Appendix A.3:

µ̂k =
nαx̄t,k +m(1− α)x̄o,k

nα+m(1− α)
.

We can explicitly compute x̄t,k and x̄o,k in the OOD-aware setting since we can separate target
samples from OOD samples. For the synthetic dataset, the threshold ĉα = µ̂0+µ̂1

2 of the hypothesis
ĥα follows a normal distribution N (µhα, σ

2
hα) where

µhα = E[ĉα] =
m(1− α)∆

nα+m(1− α)

σ2
hα = Var[ĉα] =

α2n+ (1− α)2m

(αn+ (1− α)m)2

Similar to the Appendix A.3, we derive an analytical expression for the expected target risk of the
weighted FLD, which is

et(ĥα) =
1

2

[
Φ

(
µhα − µ√

1 + σ2
hα

)
+ Φ

(
−µhα − µ√

1 + σ2
hα

)]
(11)
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A.6 Additional Experiments using FLD
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Figure A1: The FLD generalization error (Y-axis) on the target task is plotted against the ratio of OOD samples
to target samples (X-axis). Figures (a) and (c) are plotted using the analytical expressions in (8) and (11)
respectively while figures (b) and (d) are the corresponding plots fromMonte-carlo simulations. The Monte-carlo
simulations agree with the plots from the analytical expression, which validates its correctness. (a) and (b): The
figure is identical to Fig. 1 and considers synthetic tasks with n = 100, µ = 5 and σ = 10 in the OOD-agnostic
setting. While a small number of OOD samples improves generalization on the target task, lots of samples
increase the generalization error on the target task. (c) and (d): The figures consider synthetic tasks with n = 4,
µ = 1 and σ = 1 in the OOD-aware setting. If we consider the weighted FLD trained with optimal α∗, then the
average generalization error monotonically decreases with more OOD samples. Shaded regions indicate 95%
confidence intervals over the Monte-Carlo replicates.

B Experiments with Neural Networks

B.1 Datasets

We experiment on images from CIFAR-10, CINIC-10 (Darlow et al., 2018) and several datasets from
the DomainBed benchmark (Gulrajani & Lopez-Paz, 2020): Rotated MNIST (Ghifary et al., 2015),
PACS (Li et al., 2017), and DomainNet (Peng et al., 2019). We construct sub-tasks from these datasets
as explained below.

CIFAR-10 We use of tasks from Split-CIFAR10 (Zenke et al., 2017) which are five binary
classification sub-tasks constructed by grouping consecutive labels of CIFAR-10. The 5 tasks are
airplane vs. automobile (T1), bird vs. cat (T2), deer vs. dog (T3), frog vs. horse (T4) and ship vs truck
(T5). All the images are of size (3, 32, 32).

CINIC-10 This dataset combines CIFAR-10 with downsampled images from ImageNet. It contains
images of size (3, 32, 32) across 10 classes (same classes as CIFAR-10). As there are two sources of
the images within this dataset, it is a natural candidate for studying distribution shift. The construction
of the dataset motivates us to consider two tasks from CINIC-10: (1) Task with only CIFAR images,
and (2) Task with only ImageNet images.

Rotated MNIST This dataset is constructed from MNIST by rotating the images (which are of
size (1, 28, 28). All MNIST images rotated by an angle θ◦ are considered to belong to the same
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task. Hence, we can consider the family of tasks which is characterized by 10-way classification of
hand-written digit images rotated θ◦. By varying θ, we can obtain a number of different tasks.

PACS PACS contains images of size (3, 224, 244) with 7 classes present across 4 domains {art,
cartoons, photos, sketches}. In our experiments, we consider only 3 classes ({Dog, Elephant, Horse})
out of the 7 and consider the 3-way classification of images from a given domain as a task. Therefore,
we can have a total of 4 distinct tasks from PACS.

DomainNet Similar to PACS, this dataset contains images of size (3, 224, 244) from 6 domains {
clipart, infograph, painting, quickdraw, real, sketches} across 345 classes. In our experiments, we
consider only 2 classes, ({Bird, Plane}) and consider the binary classification of images from a given
domain as task. As a result, we can have a total of 6 distinct tasks from PACS.

B.2 Forming Target and OOD Tasks

We consider two types of setups to study the impact of OOD data:

OOD data arising due to geometric intra-class nuisances We study the effect of intra-class
nuisances using a classification task as the target task and transformed versions of the same task as
different OOD tasks. In this regard, we consider the following experimental setups.

1. Rotated MNIST: unrotated-domain task as target and θ◦- rotated-domain task as
OOD: We consider the 10-way classification (see Appendix B.1) of unrotated images as the
target task and that of the θ◦- rotated images as the OOD samples. We can have different
OOD tasks by selecting different values for θ.

2. Rotated CIFAR-10: T2 as target and rotated T2 as OOD: We choose the bird vs. cat
(T2) task from Split-CIFAR10 as the target task. We then rotate the images of T2 by an angle
θ◦ counter-clockwise around their centers to form a new task denoted by θ-T2, which we
consider as the OOD task. Different OOD tasks can be obtained by selecting different values
for θ.

3. Blurred CIFAR-10: T4 as target and blurred T4 as OOD:We choose the Frog vs. Horse
(T4) task from Split-CIFAR10 as the target task. We then add Gaussian blur with standard
deviation σ to the images of T4 to form a new task denoted by σ-T2, which we consider as
the OOD task. By setting distinct values for σ, we can have different OOD tasks.

OOD data arising due to category shifts and concept drifts We study this aspect using two
different target and OOD classification problems as described below.

1. Split-CIFAR10: Ti as Target and Tj as OOD: We choose a pair of distinct tasks from
the 5 binary classification tasks of Split-CIFAR10 and consider one as the target task and
the other as the OOD task. We perform experiments for all pairs of tasks (20 in total) in
Split-CIFAR10.

2. PACS: Photo-domain task as target and X-domain task as OOD: Out of the four 3-way
classification tasks from PACS described in Appendix B.1, we select the photo-domain
task as the target task and consider one of the remaining 3 domain tasks (for instance, the
sketch-domain task) as the OOD task.

3. DomainNet: Real-domain task as target and X-domain task as OOD: Out of the six
binary classification tasks from DomainNet described in Appendix B.1, we consider the
real-domain task as the target task and select one of the remaining 5 domain tasks (for
instance, the painting-domain task) as the OOD task.

4. CINIC-10: CIFAR task as target and ImageNet task as OOD: Here we simply select
the 10-way classification of CIFAR images as the target task and that of ImageNet as the
OOD task.

B.3 Experimental Details

In the above experiments, for each random seed, we randomly select a fixed sample of size n from the
target task. Next, we select samples from the OOD task of varying sizes m such that each progressive
sample is a subset of the next sample. The samples from both target and OOD tasks preserve the
ratio of the classes. For rotated MNIST, rotated CIFAR-10, and blurred CIFAR-10, when selecting
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multiple sets of OOD samples, the OOD images that correspond to the n selected target images are
disregarded. For PACS and DomainNet, the images are downsampled to (3, 64, 64) during training.

For both the OOD-agnostic (OOD unknown) and OOD-aware (OOD known) settings, at each
m-value, we construct a combined dataset containing the n sized target set and m sized OOD set. We
use a CNN (see Appendix B.4) for experiments in the both of these settings. We experiment with α
fixed to 0.5 (naive OOD-aware model) and with the optimal α∗. We average the runs over 10 random
seeds and evaluate on a test set comprised of only target samples.

In the optimal OOD-aware setting, we use a grid-search to find the optimal α∗ for each value of
m. We use an adaptive equally-spaced α search set of size 10 such that it ranges from α∗prev to 1.0

(excluding 1.0) where α∗prev is the optimal value of α corresponding to the previous value of m. We
use this search space since we expect α∗ to be an increasing function of m.

B.4 Neural Architectures and Training

We primarily use 3 different network architectures in our experiments: (a) a small convolutional
network with 0.12M parameters (denoted by SmallConv), (b) a wide residual network (Zagoruyko &
Komodakis, 2016) of depth 10 and widening factor 2 (WRN-10-2), and (c) a larger wide residual
network of depth 16 and widening factor 4 (WRN-16-4). SmallConv comprises of 3 convolution
layers (kernel size 3 and 80 filters) interleaved with max-pooling, ReLU, batch-norm layers, with a
fully-connected classifier layer in our experiments.

Table A1 provides a summary of network architectures used in the experiments described earlier.
All the networks are trained using stochastic gradient descent (SGD) with Nesterov’s momentum
and cosine-annealed learning rate. The hyperparameters used for the training are, learning rate of
0.01, and a weight-decay of 10−5. All the images are normalized to have mean 0.5 and standard
deviation 0.25. In the OOD-agnostic setting, we use sampling without replacement to construct the
mini-batches. In the OOD-aware settings (both naive and optimal), we construct mini-batches with a
fixed ratio of target and OOD samples. See Appendix B.5 and Fig. A2 for more details.

Experiment Network(s) # classes n Image Size Mini-Batch Size

Rotated MNIST SmallConv 10 100 (1,28,28) 128
Rotated CIFAR-10 SmallConv, WRN-10-2 2 100 (3,32,32) 128
Blurred CIFAR-10 WRN-10-2 2 100 (3,32,32) 128
Split-CIFAR10 SmallConv, WRN-10-2 2 100 (3,32,32) 128
PACS WRN-16-4 3 30 (3,64,64) 16
DomainNet WRN-16-4 2 50 (3,64,64) 16
CINIC-10 WRN-10-2 10 100 (3,32,32) 128

Table A1: Summary of network architectures used in the experiments

B.5 Construction of Mini-Batches

Consider a mini-batch {(xbi , ybi)}Bi=1 of size B. Let the randomly chosen mini-batch contains Bt
target samples and Bo OOD samples (B = Bt + Bo). Let êB,t(h) and êB,o(h) denote the average
mini-batch surrogate losses for the Bt target samples and Bo OOD samples respectively.

In the OOD-aware (when we know which samples are OOD) setting, êB,t(h) and êB,o(h) can be
computed explicitly for each mini-batch resulting in the mini-batch gradient

∇̂êB(h) = α∇̂êB,t(h) + (1− α)∇̂êB,o(h). (12)
If we were to sample without replacement, we expect the fraction of the target samples in every
mini-batch to approximately equal n

n+m on average. However, if m >> n, we run into a couple of
issues. First, we observe that most mini-batches have no target samples, making it impossible to
compute ∇̂êB,t(h). Next, even if the mini-batch does have some target samples, there are very few of
them, resulting in high variance in the estimate ∇̂êB,t(h).

Hence, we find it beneficial to consider alternative sampling schemes for the mini-batch.
Independent of the values of n and m, we use a sampler which ensures that every mini-batch has a
fixed fraction of target samples, which we denote by β. For example if the mini-batch size B is 20 and
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if β = 0.5, then every mini-batch has 10 target samples and 10 OOD samples regardless of n and m.
Note that this sampling biases the gradient, but results in reduced variance estimates. In practice, we
observe improved test errors when we set β to either 0.5 or 0.75.

B.6 Comparing the Effect of Using Conventional and Custom Batches
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Figure A2: The test error of a neural network (SmallConv) on the target task (Y-axis) is plotted against the
number of samples from the OOD task (X-axis) for the target-OOD task pair of T1 and T5. One set of curves
(lightest shade of green and yellow) considers mini-batches which are constructed using sampling without
replacement; This is the conventional strategy used in supervised learning. The other curves consider β = 0.5
(intermediate shades of orange and green) and β = 0.75 (darkest shade of red and green). All plots are in the
OOD-aware setting. Left: If we consider α = 0.5, then the choice of β has little effect on the generalization
error. Right: However, if we use the α∗ to weight the OOD and target losses, then the generalization error
depends on the the choice of β with β = 0.75 having the lowest test error.

19



B.7 Additional Experiments with Neural Networks
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Figure A3: (a) We plot the test error of SmallConv on the target task (Y-axis) against the ratio of number of
samples from the OOD task to the number of samples on the target task (X-axis), for all target-OOD task pairs
from Split-CIFAR10. A neural net trained with a loss weighted by α∗ is able to leverage OOD data to improve
the networks ability to generalize on the target task. Shaded regions indicate 95% confidence intervals over
10 experiments. (b) The optimal α∗ (Y-axis) is plotted against the number of OOD samples (X-axis) for the
optimally weighted OOD-aware setting. As we increase the number of OOD samples, we see that α∗ increases.
This allows us to balance the variance from few target samples and the bias from using OOD samples from a
different disitribution.
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Figure A4: (a) We plot the test error of WRN-10-2 on the target task (Y-axis) against the ratio of number of
samples from the OOD task to the number of samples on the target task (X-axis), for all target-OOD task pairs
from Split-CIFAR10. A neural net trained with a loss weighted by α∗ is able to leverage OOD data to improve
the networks ability to generalize on the target task. Shaded regions indicate 95% confidence intervals over
10 experiments. (b) The optimal α∗ (Y-axis) is plotted against the number of OOD samples (X-axis) for the
optimally weighted OOD-aware setting. As we increase the number of OOD samples, we see that α∗ increases.
This allows us to balance the variance from few target samples and the bias from using OOD samples from a
different disitribution.
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Figure A5: Left: A binary classification problem (Bird vs. Cat) is the target task and images of these classes
rotated by different angles θ◦ are the OOD task. We see non-monotonic curves for larger values of θ◦. For
135◦ in particular, the generalization error atm/n = 50 is worse than the generalization error with no OOD
samples, i.e. OOD samples actively hurt generalization. Middle: Generalization error on the target task is
plotted against the number of samples from the OOD task for 3 different pairs of target-OOD tasks constructed
from CIFAR-10 for three settings: OOD-agnostic ERM where we minimize the total average risk over both tasks
(red), an objective which minimizes the sum of the average loss of the target and OOD tasks which corresponds
to α = 1/2 (OOD-aware, yellow) and an objective which minimizes an optimally weighted convex combination
of the target and OOD empirical loss (green). Right: The optimal α∗ obtained via grid search for the three
problems in the middle column plotted against different number of OOD samples. Note that the appropriate
value of α lies very close to 1 but it is never exactly 1. In other words the OOD samples always benefit if we
use the weighted objective in Theorem 3, even if this benefit is marginal in cases when OOD samples are very
different from those of the target.
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