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Abstract

Domain adversarial training has been ubiquitous for
achieving invariant representations and is used widely for
various domain adaptation tasks. In recent times, methods
converging to smooth optima have shown improved gener-
alization for supervised learning tasks like classification.
In this work, we analyze the effect of smoothness enhanc-
ing formulations on domain adversarial training, the ob-
jective of which is a combination of task loss (eg. classi-
fication, regression etc.) and adversarial terms. We find
that converging to a smooth minima with respect to (w.r.t.)
task loss stabilizes the domain adversarial training lead-
ing to better performance on target domain. In contrast
to task loss, our analysis shows that converging to smooth
minima w.r.t. adversarial loss leads to sub-optimal gener-
alization on the target domain. Based on the analysis, we
introduce the Smooth Domain Adversarial Training (SDAT)
procedure, which effectively enhances the performance of
existing domain adversarial methods for both classifica-
tion and object detection tasks. Our analysis also pro-
vides insight into the extensive usage of SGD over Adam
in the community for domain adversarial training. Code:
https://github.com/val-iisc/SDAT

1. Introduction
Unsupervised Domain Adaptation refers to the class of

methods that enables the model to learn representations
from the source domain’s labeled data that generalizes well
on the unseen data from the target domain [1, 32–34, 55].
A prominent line of work is based on Domain adversarial
training (DAT) [16].

DAT involves using an additional discriminator to distin-
guish between source and target domain features. A Gra-
dient Reversal layer (GRL) is introduced to achieve the
goal of learning domain invariant features. The follow-up
works have improved upon this basic idea by introducing a
class information-based discriminator (CDAN [34]), intro-
ducing a transferable normalization function [50], using an
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improved Margin Disparate Discrepancy [55] measure be-
tween source and target domain, etc.

As DAT objective is a combination of Generative Adver-
sarial Network (GAN) [19] (adversarial loss) and Empiri-
cal Risk Minimization (ERM) [48] (task loss) objectives,
there has not been much focus on explicitly analyzing and
improving the nature of optimization in DAT. In optimiza-
tion literature, it has been often stated that smoother minima
generalizes better on unseen data [13,20,22,23]. Recently, a
method called Sharpness Aware Minimization (SAM) [15]
has been proposed for improved generalization, which finds
smoother minima with an additional gradient computation
step. However, we find that naively using smoothness tech-
niques (like SAM) on DAT does not lead to improved gen-
eralization on target domain.

In this work, we analyse the loss landscape near the
optimal point obtained by DAT by inspecting the eigen-
spectrum of Hessian (i.e. curvature) of the task loss (ERM
term for classification). Based on the insights gained
through our analysis, we summarise our contributions as:

• We show that converging to smooth minima w.r.t. task
loss leads to stable and effective domain alignment
through DAT, whereas smoothness enhancing formu-
lation for adversarial loss leads to sub-optimal perfor-
mance via DAT. We also find that using Stochastic
Gradient Descent (SGD) as optimizer converges to a
smoother minima in comparison to Adam [30].

• For enhancing the smoothness w.r.t. task loss near op-
tima in DAT, we propose a simple, novel, and theoret-
ically motivated SDAT (Fig. 1) formulation that leads
to stable DAT resulting in improved generalization on
the target domain.

• We find that SDAT, when combined with the existing
state-of-the-art (SOTA) baseline for DAT, leads to sig-
nificant gains in performance. Notably, with ViT back-
bone, SDAT leads to an average gain of 3.1% over
baseline, producing SOTA DA performance without
requiring any additional module (or pre-training data)
using only a 12 GB GPU. Moreover, we show a proto-
typical application of SDAT in DA for object detection,
showing it’s diverse applicability across various tasks.

https://github.com/val-iisc/SDAT
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Figure 1. Overview of Smooth Domain Adversarial Training (SDAT). We demonstrate that converging to smooth minima w.r.t. adversarial
loss leads to sub-optimal DAT. Due to this conventional approaches which smooth combination of task loss and adversarial loss lead to
sub-optimal results. Hence, we propose SDAT which only focuses on smoothing task loss, leading to stable training which results in
effective generalization on target domain. 1

2. Background
2.1. Preliminaries

We will primarily focus on unsupervised DA where we
have labeled source data S = {(xsi , ysi )} and unlabeled tar-
get data T = {(xti)}. The source samples are assumed to
be sampled i.i.d. from source distribution PS defined on
input space X , similarly target samples are sampled i.i.d.
from PT . Y is used for denoting the label set which is
{1, 2, . . . , k} in our case as we perform multiclass (k) clas-
sification. We denote y : X → Y a mapping from images to
labels. Our task is to find a hypothesis function hθ that has
a low risk on the target distribution. The source risk (a.k.a
expected error) of the hypothesis hθ is defined with respect
to loss function l as: RlS(hθ) = Ex∼PS

[l(hθ(x), y(x))].
The target risk RlT (hθ) is defined analogously. The empir-
ical versions of source and target risk will be denoted by
R̂lS(hθ) and R̂lT (hθ). All notations used in paper are sum-
marized in App. A. In this work we build on the DA theory
of [1] which is a generalization of [2]. We first define the
discrepancy between the two domains.

Definition 2.1 (Dϕ
hθ,H discrepancy). The discrepancy be-

tween two domains PS and PT is defined as following:
Dϕ
hθ,H(PS ||PT ) := sup

h′∈H
[Ex∼PS

[l(hθ(x), h
′(x))]]−

[Ex∼PT
[ϕ∗(l(hθ(x), h

′(x)))]]
(1)

Here ϕ∗ is a frenchel conjugate of a lower semi-continuous
convex function ϕ that satisfies ϕ(1) = 0, and H is the set
of all possible hypothesis (i.e. Hypothesis Space).

This discrepancy distance Dϕ
hθ,H is based on variational

formulation of f-divergence [37] for the convex function ϕ.
The Dϕ

hθ,H is the lower bound estimate of the f-divergence
function Dϕ(PS ||PT ) (Lemma 4 in [1]). We state a gen-
eralization bound on target risk RlT (hθ) based on proposed
Dϕ
hθ,H discrepancy [1] for it’s soundness in App. C.

2.2. Unsupervised Domain Adaptation

In this section, we first define the components of the
framework we use for our purpose: hθ = fΘ ◦ gψ where gψ

is the feature extractor and fΘ is the classifier. The domain
discriminator DΦ, used for estimating the discrepancy be-
tween PS and PT is a classifier whose goal is to distinguish
between the features of two domains. For minimizing the
target risk (Th. 1), the optimization problem is as follows:

min
θ

Ex∼PS
[l(hθ(x), y(x))] +Dϕ

hθ,H(PS ||PT ) (2)

The discrepancy term under some assumptions (refer App.
B) can be upper bounded by a tractable term:

Dϕ
hθ,H(PS ||PT ) ≤ max

Φ
dΦS,T (3)

where dΦS,T = Ex∼PS
[log(DΦ(gψ(x)))] + Ex∼PT

log[1 −
DΦ(gψ(x))]. This leads to the final optimization of:

min
θ

max
Φ

Ex∼PS
[l(hθ(x), y(x))] + dΦS,T (4)

The first term in practice is empirically approximated by
using finite samples R̂lS(hθ) and used as task loss (classifi-
cation) for minimization. The empirical estimate of the sec-
ond term is adversarial loss which is optimized using GRL
as it has a min-max form. (Overview in Fig. 1) The above
procedure composes DAT, and we use CDAN [34] as our
default DAT method.

3. Analysis of Smoothness
In this section, we analyze the curvature properties of

the task loss with respect to the parameters (θ). Specifi-
cally, we focus on analyzing the Hessian of empirical source
risk H = ∇2

θR̂
l
S(hθ) which is the Hessian of classification

(task) loss term. For quantifying the smoothness, we mea-
sure the trace Tr(H) and maximum eigenvalue of Hessian
(λmax) as a proxy for quantifying smoothness. This is moti-
vated by analysis of which states that the low value of λmax
and Tr(H) are indicative of convergence to highly smooth
loss landscape [26]. Based on our observations we articu-
late our conjecture below:

Conjecture 1. Low λmax for Hessian of empirical source
risk (i.e. task loss) ∇2

θR̂
l
S(hθ) leads to stable and effective

DAT, resulting in reduced risk on target domain R̂lT (hθ).
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Figure 2. Eigen Spectral Density plots of Hessian (∇2R̂l
S(hθ)) for Adam (A), SGD (B) and SDAT (C) on Art ) Clipart. Each plot contains

the maximum eigenvalue (λmax) and the trace of the Hessian (Tr(H)), which are indicators of the smoothness (Low Tr(H) and λmax

indicate the presence of smoother loss surface). Low range of eigenvalues (x-axis), Tr(H) and λmax for SGD compared to Adam indicates
that it reaches a smoother minima, which leads to a higher target accuracy. D) Validation accuracy and λmax comparison for SDAT and
DAT across epochs, SDAT shows significantly stable training with low λmax.

For empirical verification of our conjecture, we obtain
the Eigen Spectral Density plot for the Hessian R̂lT (hθ).
We show the λmax, Tr(H) and Eigen Spectrum for differ-
ent algorithms, namely DAT w/ Adam, DAT w/ SGD and
our proposed SDAT (Fig. 2). We find that high smoothness
leads to better generalization on the target domain (Addi-
tional empirical evidence in Fig. 4A in App. G). We hypoth-
esize that enforcing smoothness of classifier hθ leads to a
smooth landscape for discrepancy (dΦS,T ) as it is also a func-
tion of hθ. The smooth landscape ensures stable minimiza-
tion (of Eq. 4), ensuring a decrease in (dΦS,T ) with each SGD
step even for a large step size (similar to [9]), this explains
the enhanced stability and improved performance of domain
adversarial training. For verifying the stabilization effect of
smoothness, empirically we obtain λmax for SGD and pro-
posed SDAT at both best (λbestmax) and last epoch (λlastmax) for
adaptation from Infographic to Clipart Domain (Fig. 2D).
We find that as λmax increases (decrease in smoothness of
landscape), the training becomes unstable for SGD leading
to a drop in validation accuracy. Whereas in the case of the
proposed SDAT, the λmax remains low across epochs, lead-
ing to stable and better validation accuracy curve. We pro-
vide more validation accuracy curves for adaptation tasks
where we also observe a similar phenomenon in Fig. 5.
To the best of our knowledge, our analysis of the effect of
smoothness of task loss on the stability of DAT is novel.
We also find that SGD leads to low λmax (high smooth-
ness w.r.t. task loss) in comparison to Adam leading to bet-
ter performance. This also explains the widespread usage
of SGD for DAT algorithms [16, 34, 41], instead of Adam.
More details about Hessian analysis is provided in App. D.

3.1. Smoothing Loss Landscape

In this section we first introduce the losses which are
based on Sharpness Aware Minimization [15] (SAM). The
basic idea of SAM is to find a smoother minima (i.e. low
loss in ϵ neighborhood of θ) by using the following objec-

tive given formally below:

min
θ

max
||ϵ||≤ρ

Lobj(θ + ϵ) (5)

here Lobj is the objective function to be minimized and ρ ≥
0 is a hyperparameter which defines the maximum norm for
ϵ. Since finding the exact solution of inner maximization is
hard, SAM maximizes the first order approximation:

ϵ̂(θ) ≈ argmax
||ϵ||≤ρ

Lobj(θ) + ϵT∇θLobj(θ)

= ρ∇θLobj(θ)/||∇θLobj(θ)||2
(6)

The ϵ̂(θ) is added to the weights θ. The gradient update
for θ is then computed as ∇θLobj(θ)|θ+ϵ̂(θ). The above pro-
cedure can be seen as a generic smoothness enhancing for-
mulation for any Lobj . We now analogously introduce the
sharpness aware source risk for finding a smooth minima:

max
||ϵ||≤ρ

RlS(hθ+ϵ) = max
||ϵ||≤ρ

Ex∼PS
[ l(hθ+ϵ(x), f(x))] (7)

We also now define the sharpness aware discrepancy esti-
mation objective below:

max
Φ

min
||ϵ||≤ρ

dΦ+ϵ
S,T (8)

As dΦS,T is to be maximized the sharpness aware objec-
tive will have min

||ϵ||≤ρ
instead of max

||ϵ||≤ρ
, as it needs to find

smoother maxima.
We find that above smooth discrepancy (sharpness

aware) based smooth discriminator, i.e. SDAT w/ adv re-
sults in sub-optimal generalization on target domain i.e.
high target error RlT (hθ) (Fig. 4B). We also observe that
further increasing the smoothness of the discriminator (i.e.
discrepancy) w.r.t. adversarial loss (increasing ρ) leads to
lowering of performance on the target domain (Fig. 4C).
We also show that for gradient Lipschitz functions the dis-
criminator is suboptimal between source and target domain,
with smooth version of adversarial loss (App. C). A similar
trend is observed in GANs (App. E) which also has a sim-
ilar min-max objective. The theoretical justification of the
suboptimality of smooth discrepancy is provided in App. C.



3.2. Smooth Domain Adversarial Training (SDAT)

We propose Smooth Domain Adversarial Training which
only focuses on converging to smooth minima w.r.t. task
loss (i.e. empirical source risk), whereas preserves the orig-
inal discrepancy term. We define the optimization objective
of proposed Smooth Domain Adversarial Training below:

min
θ

max
Φ

max
||ϵ||≤ρ

Ex∼PS
[l(hθ+ϵ(x), y(x))] + dΦS,T (9)

The first term is the sharpness aware risk, and the second
term is the discrepancy term which is not smooth in our pro-
cedure. The term dΦS,T estimates Dϕ

hθ,H
(PS ||PT ) discrep-

ancy. Any DAT baseline can be modified to use SDAT ob-
jective just by using few lines of code (App. L). We observe
that the proposed SDAT objective (Eq. 9) leads to signifi-
cantly lower generalization error compared to the original
DA objective (Eq. 4), which we empirically demonstrate in
the following sections.

4. Adaptation for classification
We evaluate our proposed method on three datasets:

Office-Home [49], VisDA-2017 [39], and DomainNet [39],
as well as by combining SDAT with two DAT based DA
techniques: CDAN and CDAN+MCC. We also show re-
sults with ViT backbone on Office-Home and VisDA-2017
dataset. We show the effectiveness of our method primar-
ily on the popular domain adaptation method CDAN [34]
and CDAN+MCC [27], where a minimum class confusion
(MCC) loss term is added as a regularizer to CDAN. Addi-
tional information regarding the methods is given in App.
F. Moreover, the application of SDAT in DA for object de-
tection is given in App. M. Additional ablations on SDAT
is discussed in App. N.

Table 1. Accuracy (%) on Office-Home and VisDA-2017 for un-
supervised DA (with ResNet-50 and ViT backbone).

Method Avg (Office-Home) Avg (VisDA-2017)

CDAN

R
es

N
et

-5
0 68.4 80.6

CDAN w/ SDAT 69.5 82.1
CDAN + MCC 71.3 83.6
CDAN + MCC w/ SDAT 72.2 84.3

TVT [53]

V
iT

83.6 83.9
CDAN 79.3 79.6
CDAN w/ SDAT 82.4 84.5
CDAN + MCC 82.2 87.7
CDAN + MCC w/ SDAT 84.3 89.8

4.1. Results

Office-Home & VisDA-2017 : Table 1 compiles the re-
sult of our method on benchmark datasets. CDAN+MCC
w/ SDAT achieves SOTA adversarial adaptation perfor-
mance on the Office-Home dataset with ResNet-50 back-
bone. With ViT backbone, the increase in accuracy due
to SDAT is more significant. This may be attributed to

the observation that ViTs reach a sharp minima compared
to ResNets [7]. CDAN w/ SDAT improves over CDAN
by 1.1% with ResNet-50 and 3.1% with ViT backbone on
Office-Home dataset. A similar trend is seen for VisDA-
2017. CDAN + MCC w/ SDAT outperforms TVT [53], a
recent ViT based DA method and achieves SOTA results
on both Office-Home and VisDA datasets. App. J covers
additional comparison of the proposed method with TVT.
Table 7 and Table 6 in App. G compiles the performance
of the proposed method across all the source-target pairs of
Office-Home and VisDA-2017 dataset, respectively.

DomainNet: Table 2 shows the results on the large and
challenging DomainNet dataset across five domains. The
proposed method improves the performance of CDAN sig-
nificantly across all source-target pairs. On specific source-
target pairs like inf)real, the performance increase is 4.5%.
The overall performance of CDAN is improved by nearly
1.8% which is significant considering the large number of
classes and images present in DomainNet. The improved
results are attributed to stabilized domain adversarial train-
ing through proposed SDAT which can be seen in Fig. 2D.

Table 2. Results on DomainNet with CDAN w/ SDAT. The num-
ber in the parenthesis refers to the increase in Acc. w.r.t. CDAN.

Target (→) clp inf pnt real skt AvgSource (↓)

clp - 22.0 41.5 57.5 47.2 42.1
(+1.4) (+2.6) (+1.5) (+2.3) (+2.0)

inf 33.9 - 30.3 48.1 27.9 35.0
(+2.3) (+1.0) (+4.5) (1.5) (+2.3)

pnt 47.5 20.7 - 58.0 41.8 42.0
(+3.4) (+0.9) (+0.8) (+1.8) (+1.7)

real 56.7 25.1 53.6 - 43.9 44.8
(+0.9) (+0.7) (+0.4) (+1.6) (+1.0)

skt 58.7 21.8 48.1 57.1 - 46.4
(+2.7) (+1.1) (+2.8) (+2.2) (+2.2)

Avg 49.2 22.4 43.4 55.2 40.2 42.1
(+2.3) (+1.0) (+1.7) (+2.2) (+1.8) (+1.8)

5. Conclusion

In this work, we analyze the curvature of loss surface of
DAT used extensively for Unsupervised DA. We find that
converging to a smooth minima w.r.t. task loss (i.e., empir-
ical source risk) leads to stable DAT which results in better
generalization on the target domain. We also theoretically
and empirically show that smoothing adversarial compo-
nents of loss lead to sub-optimal results, hence should be
avoided in practice. We then introduce our practical and ef-
fective method, SDAT, which only increases the smoothness
w.r.t. task loss, leading to better generalization on the target
domain. SDAT leads to an effective increase for the latest
methods for adversarial DA, achieving SOTA performance
on benchmark datasets.
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A. Notation Table
Table 3 contains all the notations used in the paper and the proofs of theorems.

Table 3. The notations used in the paper and the corresponding meaning.
Notation Meaning
S Labeled Source Data
T Unlabelled Target Data
PS (or PT ) Source (or Target) Distribution
X Input space
Y Label space
y(·) Maps image to labels
hθ Hypothesis function
RlS(hθ) (or RlT (hθ)) Source (or Target) risk
R̂lS(hθ) (or R̂lT (hθ)) Empirical Source (or Target) risk
H Hypothesis space
Dϕ
hθ,H(PS ||PT ) Discrepancy between two domains PS and PT

gψ Feature extractor
fΘ Classifier
DΦ Domain Discriminator
dΦS,T Tractable Discrepancy Estimate
∇2
θR̂

l
S(hθ) (or H) Hessian of classification loss

Tr(H) Trace of Hessian
λmax Maximum eigenvalue of Hessian
ϵ Perturbation
ρ Maximum norm of ϵ

B. Connection of Discrepancy to dΦS,T (Eq. 4) in Main Paper

We refer reader to Appendix C.2 of [1] for relation of dΦS,T . The dΦS,T term defined in Eq. 4 given as:

dΦS,T = Ex∼PS
[log(DΦ(gψ(x)))] + Ex∼PT

[log(1−DΦ(gψ(x)))] (10)

The above term is exactly the Eq. C.1 in [1] where they show that optimal dΦS,T i.e.:

max
Φ

dΦS,T = DJS(PS ||PT )− 2 log(2) (11)

Hence we can say from result in Eq. 4 is a consequence of Lemma 1 and Proposition 1 in [1], assuming that DΦ satisfies the
constraints in Proposition 1.

C. Theoretical Analysis
In this section, we present theoretical results and their corresponding proofs for the proposed SDAT.

Theorem 1 (Generalization bound). Suppose l : Y × Y → [0, 1] ⊂ dom ϕ∗. Let h∗ be the ideal joint classifier with error
λ∗ = RlS(h

∗) +RlT (h
∗). We have the following relation between source and target risk:

RlT (hθ) ≤ RlS(hθ) +Dϕ
hθ,H(PS ||PT ) + λ∗ (12)

The above generalization bound shows that the target risk RlT (hθ) is upper bounded by the source risk RlS(hθ) and
the discrepancy term Dϕ

hθ,H along with an irreducible constant error λ∗. Hence, this infers that reducing source risk and
discrepancy lead a to reduction in target risk.

Proof. We refer the reader to Theorem 2 in Appendix B of [1] for the detailed proof the theorem.



We now introduce a Lemma for smooth functions which we will use in the proofs subsequently:

Lemma 1. For an L-smooth function f(w) the following holds where w∗ is the optimal minima:

f(w)− f(w∗) ≥ 1

2L
||∇f(w)||2

Proof. The L-smooth function by definition satisfies the following:

f(w∗) ≤ f(v) ≤ f(w) +∇f(w)(v − w) +
L

2
||v − w||2

Now we minimize the upper bound wrt v to get a tight bound on f(w∗).

D(v) = f(w) +∇f(w)(v − w) +
L

2
||v − w||2

after doing ∇vD(v) = 0 we get:

v = w − 1

L
∇f(w)

By substituting the value of v in the upper bound we get:

f(w∗) ≤ f(w)− 1

2L
||∇f(w)||2

Hence rearranging the above term gives the desired result:

f(w)− f(w∗) ≥ 1

2L
||∇f(w)||2

We now theoretically analyze the difference in discrepancy estimation for smooth version dΦ
′′

S,T (Eq. 8) in comparison to
non-smooth version dΦ

′

S,T (Eq. 3). Assuming DΦ is a L-smooth function (common assumption for non-convex optimiza-
tion [5]), η is a small constant and d∗S,T the optimal discrepancy, the theorem states:

Theorem 2. For a given classifier hθ and one step of (steepest) gradient ascent i.e. Φ′ = Φ + η(∇dΦS,T /||∇dΦS,T ||) and
Φ′′ = Φ+ η(∇dΦS,T |Φ+ϵ̂(Φ)/||∇dΦS,T |Φ+ϵ̂(Φ)||) for maximizing

dΦ
′

S,T − dΦ
′′

S,T ≤ η(1− cosα)
√
2L(d∗S,T − dΦS,T ) (13)

where α is the angle between ∇dΦS,T and ∇dΦS,T |Φ+ϵ̂(Φ).

The dΦ
′

S,T (non-smooth version) can exceed dΦ
′′

S,T (smooth discrepancy) significantly, as the term d∗S,T − dΦS,T ̸→ 0, as the
hθ objective is to oppose the convergence of dΦS,T to optima d∗S,T (min-max training in Eq. 4). Thus dΦ

′

S,T can be a better
estimate of discrepancy in comparison to dΦ

′′

S,T . A better estimate of dΦs,t helps in effectively reducing the discrepancy between
PS and PT , hence leads to reduced RlT (hθ).

Proof of Theorem 2. We assume that the function is L-smooth (the assumption of L-smoothness is the basis of many results
in non-convex optimization [5]) in terms of input x. As for a fixed hθ as we use a reverse gradient procedure for measuring the
discrepancy, only one step analysis is shown. This is because only a single step of gradient is used for estimating discrepancy
dΦS,T i.e. one step of each min and max optimization is performed alternatively for optimization. After this the hθ is updated
to decrease the discrepancy. Any differential function can be approximated by the linear approximation in case of small η:

dΦ+ηv
S,T ≈ dΦS,T + η∇dΦ

T

S,T v (14)

The dot product between two vectors can be written as the following function of norms and angle θ between those:

∇dΦ
T

S,T v = ||∇dΦS,T || ||v|| cosθ (15)



The steepest value will be achieved when cos θ = 1 which is actually v =
∇dΦS,T (x)

||∇dΦS,T (x)|| . Now we compare the descent in

another direction v2 =
∇dΦS,T |w+ϵ(w)

||∇dΦS,T |w+ϵ(w)||
from the gradient descent. The difference in value can be characterized by:

dΦ+ηv
S,T − dΦ+ηv2

S,T = η||∇dΦS,T ||(1− cosα) (16)

As α is an angle between ∇dΦS,T |w+ϵ(w) (v2) and ∇dΦS,T (X) (v). The suboptimality is dependent on the gradient magnitude.
We use the following result to show that when optimality gap d∗S,T − dΦS,T (x) is large the difference between two directions
is also large.

For an L-smooth function the following holds according to Lemma 1:

f(w)− f(w∗) ≥ 1

2L
||∇f(w)||2

As we are performing gradient ascent f(w) = −dΦs,t, we get the following result:

(d∗S,T − dΦS,T ) ≥
1

2L
||∇dΦS,T (x)||2

2L(d∗S,T − dΦS,T ) ≥
(dΦ+ηv2
S,T − dΦ+ηv

S,T )2

(η(1− cosα))2

η(1− cosα)
√

2L(d∗S,T − dΦS,T ) ≥ (dΦ
′

S,T − dΦ
′′

S,T )

This shows that difference in value of by taking a step in direction of gradient v vs taking the step in a different direction
v2 is upper bounded by the d∗S,T − dΦS,T (x), hence if we are far from minima the difference can be potentially large. As we
are only doing one step of gradient ascent d∗S,T − dΦS,T will be potentially large, hence can lead to suboptimal measure of
discrepancy.

We now show that optimizing Eq. 9 reduces RlT (hθ) through a generalization bound. This bound establishes that our
proposed SDAT procedure is also consistent (i.e. in case of infinite data the upper bound is tight) similar to the original DAT
objective (Eq. 4).

Theorem 3. Suppose l is the loss function, we denote λ∗ := RlS(h
∗) +RlT (h

∗) and let h∗ be the ideal joint hypothesis:

RlT (hθ) ≤ max
||ϵ||≤ρ

R̂lS(hθ+ϵ) +Dϕ
hθ,H

(PS ||PT ) + γ(||θ||22/ρ2) + λ∗. (17)

where γ : R+ → R+ is a strictly increasing function.

The bound is similar to generalization bounds for domain adaptation [1, 2]. The main difference is the sharpness aware
risk term max||ϵ||≤ρ R̂

l
S(hθ) in place of source risk RlS(hθ), and an additional term that depends on the norm of the weights

γ(||θ||22/ρ2). The first is minimized by decreasing the empirical sharpness aware source risk by using SAM loss shown in
Sec. 3. The second term is reduced by decreasing the discrepancy between source and target domains. The third term, as it is
a function of norm of weights ||θ||22, can be reduced by using either L2 regularization or weight decay. Since we assume that
the H hypothesis class we have is rich, the λ∗ term is small.

Proof of Theorem 3: In this case we make use of Theorem 2 in the paper sharpness aware minimization [15] which states the
following: The source risk RS(h) is bounded using the following PAC-Bayes generalization bound for any ρ with probability
1− δ:

RS(hθ) ≤ max
||ϵ||≤ρ

R̂S(hθ) +

√√√√√√k log

(
1 +

∥θ∥2
2

ρ2

(
1 +

√
log(n)
k

)2
)

+ 4 log n
δ + Õ(1)

n− 1

(18)



Table 4. Architecture used for feature classifier and Do-
main classifier. C is the number of classes. Both clas-
sifiers will take input from feature generator (gθ).

Layer Output Shape
Feature Classifier (fΘ)

- Bottleneck Dimension
Linear C

Domain Classifier (DΦ)
- Bottleneck Dimension

Linear 1024
BatchNorm 1024

ReLU 1024
Linear 1024

BatchNorm 1024
ReLU 1024
Linear 1

Table 5. Accuracy (%) on VisDA-2017 (ResNet-101
and ViT backbone).

Method Synthetic → Real
DANN [17]

R
es

N
et

-1
01

57.4
MCD [43] 71.4
CDAN* [34] 73.7
CDAN 76.6
CDAN w/ SDAT 78.3
CDAN+MCC [27] 80.4
CDAN+MCC w/ SDAT 81.2
CDAN

V
iT

76.7
CDAN w/ SDAT 81.1
CDAN+MCC [27] 85.1
CDAN+MCC w/ SDAT 87.8

here n is the training set size used for calculation of empirical risk R̂S(h), k is the number of parameters and ||θ||2 is the
norm of the weight parameters. The second term in equation can be abbreviated as γ(||θ||2). Hence,

RS(hθ) ≤ max
||ϵ||≤ρ

R̂S(hθ) + γ(||θ||22/ρ2) (19)

From the generalization bound for domain adaptation for any f-divergence [1] (Theorem 2) we have the following result.

RlT (hθ) ≤ RlS(hθ) +Dϕ
hθ,H

(PS ||PT ) + λ∗ (20)

Combining the above two inequalities gives us the required result we wanted to prove i.e.

RlT (hθ) ≤ R̃lS(hθ) +Dϕ
hθ,H

(PS ||PT ) + γ(||θ||22/ρ2) + λ∗. (21)

D. Hessian Analysis
We use the PyHessian library [54] to calculate the Hessian eigenvalues and the Hessian Eigen Spectral Density. For Office-

Home experiments, all the calculations are performed using 50% of the source data at the last checkpoint. For DomainNet
experiments (Fig. 2D), we use 10% of the source data for Hessian calculation. The Maximum Eigenvalue is calculated at
the checkpoint with the best validation accuracy (λbestmax) and the last checkpoint (λlastmax). Only the source class loss is used
for calculating to clearly illustrate our point. The partition was selected randomly, and the same partition was used across all
the runs. We also made sure to use the same environment to run all the Hessian experiments. A subset of the data was used
for Hessian calculation mainly because the hessian calculation is computationally expensive [54]. This is commonly done
in hessian experiments. For example, [7] (refer Appendix D) uses 10% of training data for Hessian Eigenvalue calculation.
The PyHessian library uses Lanczos algorithm [18] for calculating the Eigen Spectral density of the Hessian and uses the
Hutchinson method to calculate the trace of the Hessian efficiently.

E. Smoothness of Discriminator in SNGAN
For further establishing the generality of sub-optimality of smooth adversarial loss, we also perform experiments on

Spectral Normalised Generative Adversarial Networks (SNGAN) [35]. In case of SNGAN we also find that smoothing
discriminator through SAM leads to suboptimal performance (higher FID) as in Fig. 3. The above evidences indicates that
smoothing the adversarial loss leads to sub-optimality, hence it should not be done in practice. We use the same configuration
for SNGAN as described in PyTorchStudioGAN [29] for both CIFAR10 [31] and TinyImageNet 2 with batch size of 256 in
both cases. We then smooth the discriminator while discriminator is trained by using the same formulation as in Eq. 8. We
find that smoothing discriminator leads to higher (suboptimal) Fréchet Inception Distance in case of GANs as well, shown in
Fig. 3.

2https://www.kaggle.com/c/tiny-imagenet
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Figure 3. SNGAN performance on different datasets, smoothing discriminator in GAN also leads to inferior GAN performance (higher
FID) across both datasets.

F. Experimental Details

F.1. Image Classification

We primarily showcase the efficacy of our proposed method by implementing it on the following domain adaptation
methods:

• CDAN [34]: Conditional Domain Adversarial network is a popular DA algorithm that improves the performance of the
DANN algorithm. CDAN introduces the idea of multi-linear conditioning to align the source and target distributions
better. CDAN in Table 7 and 6 refers to our implementation of CDAN* [34] method.

• CDAN + MCC [27]: The minimum class confusion (MCC) loss term is added as a regularizer to CDAN. MCC is a
non-adversarial term that minimizes the pairwise class confusion on the target domain, hence we consider this as an
additional minimization term which is added to empirical source risk. This method achieves close to SOTA accuracy
among adversarial adaptation methods.

We implement our proposed method in the Transfer-Learning-Library [28] toolkit developed in PyTorch [38]. The differ-
ence between the performance reported in CDAN* and our implementation CDAN is due to the batch normalization layer
in domain classifier, which enhances performance. We tune ρ value in SDAT for a particular dataset split and use the same
value across domains. The ρ value is set to 0.02 for the Office-Home experiments, 0.005 for the VisDA-2017 experiments
and 0.05 for the DomainNet experiments.

Office-Home: For CDAN methods with ResNet-50 backbone, we train the models using mini-batch stochastic gradient
descent (SGD) with a batch size of 32 and a learning rate of 0.01. The learning rate schedule is the same as [17]. We train it
for a total of 30 epochs with 1000 iterations per epoch. The momentum parameter in SGD is set to 0.9 and a weight decay
of 0.001 is used. For CDAN+MCC experiments with ResNet-50 backbone, we use a temperature parameter [27] of 2.5. The
bottleneck dimension for the features is set to 2048. The difference between the performance reported in CDAN* and our
implementation CDAN is due to the batch normalization layer in domain classifier, which enhances performance.

VisDA-2017: We use a ResNet-101 backbone initialized with ImageNet weights for VisDA-2017 experiments. Center
Crop is also used as an augmentation during training. We use a bottleneck dimension of 256 for both algorithms. For CDAN
runs, we train the model for 30 epochs with same optimizer setting as that of Office-Home. For CDAN+MCC runs, we use a
temperature parameter of 3.0 and a learning rate of 0.002.

DomainNet: We use a ResNet-101 backbone initialized with ImageNet weights for DomainNet experiments. We run all
the experiments for 30 epochs with 2500 iterations per epoch. The other parameters are the same as that of Office-Home.

Additional experiments with a ViT backbone are performed on Office-Home and VisDA-2017 datasets. We use the ViT-
B/16 [12] architecture pretrained on ImageNet-1k, the implementation of which is borrowed from [51]. For all CDAN runs
on Office-Home and VisDA, we use an initial learning rate of 0.01, whereas for CDAN+MCC runs, the initial learning rate



of 0.002 is used. ρ value of 0.02 is shared across all the splits on both the datasets for the ViT backbone. A batch-size of 24
is used for Office-Home and 32 for VisDA-2017.

To show the effectiveness of SDAT fairly and promote reproducibility, we run with and without SDAT on the same GPU
and environment and with the same seed. All the above experiments were run on Nvidia V100, RTX 2080 and RTX A5000
GPUs. We used Wandb [4] to track our experiments. We will be releasing the code to promote reproducible research.

F.1.1 Architecture of Domain Discriminator

One of the major reasons for increased accuracy in Office-Home baseline CDAN compared to reported numbers in the paper
is the architecture of domain classifier. The main difference is the use of batch normalization layer in domain classifier, which
was done in the library [28]. Table 4 shows the architecture of the feature classifier and domain classifier.

F.2. Additional Implementations Details for DA for Object detection

In SDAT, we modified the loss function present in [8] by adding classification loss smoothing, i.e. smoothing classification
loss of RPN and ROI, used in Faster R-CNN [40], by training with source data. Similarly, we applied smoothing to regression
loss and found it to be less effective. We implemented SDAT for object detection using Detectron2 [52]. The training is done
via SGD with momentum 0.9 for 70k iterations with the learning rate of 0.001, and then dropped to 0.0001 after 50k iterations.
We split the target data into train and validation sets and report the best mAP on validation data. We fixed ρ to 0.15 for object
detection experiments.

G. Additional Results

Table 6. Accuracy (%) on VisDA-2017 for unsupervised DA (with ResNet-101 and ViT backbone). The mean column contains mean
across all classes. SDAT particularly improves the accuracy in classes that have comparatively low CDAN performance.

Method plane bcycl bus car horse knife mcyle persn plant sktb train truck mean
CDAN

R
es

N
et

-1
01 94.9 72.0 83.0 57.3 91.6 95.2 91.6 79.5 85.8 88.8 87.0 40.5 80.6

CDAN w/ SDAT 94.8 77.1 82.8 60.9 92.3 95.2 91.7 79.9 89.9 91.2 88.5 41.2 82.1
CDAN+MCC 95.0 84.2 75.0 66.9 94.4 97.1 90.5 79.8 89.4 89.5 86.9 54.4 83.6
CDAN+MCC w/ SDAT 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
TVT [53]

V
iT

92.9 85.6 77.5 60.5 93.6 98.2 89.3 76.4 93.6 92.0 91.7 55.7 83.9
CDAN 94.3 53.0 75.7 60.5 93.9 98.3 96.4 77.5 91.6 81.8 87.4 45.2 79.6
CDAN w/ SDAT 96.3 80.7 74.5 65.4 95.8 99.5 92.0 83.7 93.6 88.9 85.8 57.2 84.5
CDAN+MCC 96.9 89.8 82.2 74.0 96.5 98.5 95.0 81.5 95.4 92.5 91.4 58.5 87.7
CDAN+MCC w/ SDAT 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8

VisDA-2017: CDAN w/ SDAT improves the overall performance of CDAN by more than 1.5% with ResNet backbone
and by 4.9% with ViT backbone on VisDA-2017 dataset (Table 6). Also, on CDAN + MCC baseline SDAT leads to 2.1%
improvement over baseline, leading to SOTA accuracy of 89.8% across classes. Particularly, SDAT significantly improves
the performance of underperforming minority classes like bicycle, car and truck. Additional discussion on statistical
significance (App. K).

Table 5 shows the overall accuracy on the VisDA-2017 with ResNet-101 and ViT backbone. The accuracy reported in
this table is the overall accuracy of the dataset, whereas the accuracy reported in the Table Table 6 refers to the mean of the
accuracy across classes. CDAN w/ SDAT outperforms CDAN by 1.7% with ResNet-101 and by 4.4% with ViT backbone,
showing the effectiveness of SDAT in large scale Synthetic → Real shifts. With CDAN+MCC as the DA method, adding
SDAT improves the performance of the method to 81.2% with ResNet-101 backbone.

Office-Home: Table 7 compiles the accuracy on all the splits of Office-Home dataset. We also compare our method with
other DA algorithms including DANN, SRDC, MDD and f-DAL. The addition of SDAT improves the performance on both
CDAN and CDAN+MCC across majority of source and target domain pairs. CDAN+MCC w/ SDAT with ViT backbone
outperforms other SOTA DA techniques . With ViT backbone, SDAT particularly improves the performance of source-target
pairs which have low accuracy on the target domain (Pr)Cl, Rw)Cl, Pr)Ar, Ar)Pr.



Table 7. Accuracy (%) on Office-Home for unsupervised DA (with ResNet-50 and ViT backbone). CDAN+MCC w/ SDAT outperforms
other SOTA DA techniques. CDAN w/ SDAT improves over CDAN by 1.1% with ResNet-50 and 3.1% with ViT backbone.

Method Ar)Cl Ar)Pr Ar)Rw Cl)Ar Cl)Pr Cl)Rw Pr)Ar Pr)Cl Pr)Rw Rw)Ar Rw)Cl Rw)Pr Avg
ResNet-50 [21]

R
es

N
et

-5
0

34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [17] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN* [34] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
MDD [55] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
f-DAL [1] 56.7 77.0 81.1 63.1 72.2 75.9 64.5 54.4 81.0 72.3 58.4 83.7 70.0
SRDC [47] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
CDAN 54.3 70.6 76.8 61.3 69.5 71.3 61.7 55.3 80.5 74.8 60.1 84.2 68.4
CDAN w/ SDAT 56.0 72.2 78.6 62.5 73.2 71.8 62.1 55.9 80.3 75.0 61.4 84.5 69.5
CDAN + MCC 57.0 76.0 81.6 64.9 75.9 75.4 63.7 56.1 81.2 74.2 63.9 85.4 71.3
CDAN + MCC w/ SDAT 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2

TVT [53]

V
iT

74.9 86.8 89.5 82.8 87.9 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
CDAN 62.6 82.9 87.2 79.2 84.9 87.1 77.9 63.3 88.7 83.1 63.5 90.8 79.3
CDAN w/ SDAT 69.1 86.6 88.9 81.9 86.2 88.0 81.0 66.7 89.7 86.2 72.1 91.9 82.4
CDAN + MCC 67.0 84.8 90.2 83.4 87.3 89.3 80.7 64.4 90.0 86.6 70.4 91.9 82.2
CDAN + MCC w/ SDAT 70.8 87.0 90.5 85.2 87.3 89.7 84.1 70.7 90.6 88.3 75.5 92.1 84.3

Table 8. Accuracy(%) on DomainNet dataset for unsupervised domain adaptation (ResNet-101) across five distinct domains. The row
indicates the source domain and the columns indicate the target domain.

ADDA clp inf pnt rel skt Avg MCD clp inf pnt rel skt Avg
clp - 11.2 24.1 41.9 30.7 27.0 clp - 14.2 26.1 45.0 33.8 29.8
inf 19.1 - 16.4 26.9 14.6 19.2 inf 23.6 - 21.2 36.7 18.0 24.9
pnt 31.2 9.5 - 39.1 25.4 26.3 pnt 34.4 14.8 - 50.5 28.4 32.0
rel 39.5 14.5 29.1 - 25.7 27.2 rel 42.6 19.6 42.6 - 29.3 33.5
skt 35.3 8.9 25.2 37.6 - 26.7 skt 41.2 13.7 27.6 34.8 - 29.3
Avg 31.3 11.0 23.7 36.4 24.1 25.3 Avg 35.4 15.6 29.4 41.7 27.4 29.9

CDAN clp inf pnt rel skt Avg CDAN w/ SDAT clp inf pnt rel skt Avg
clp - 20.6 38.9 56.0 44.9 40.1 clp - 22.0 41.5 57.5 47.2 42.1
inf 31.5 - 29.3 43.6 26.3 32.7 inf 33.9 - 30.3 48.1 27.9 35.0
pnt 44.1 19.8 - 57.2 39.9 40.2 pnt 47.5 20.7 - 58.0 41.8 42.0
rel 55.8 24.4 53.2 - 42.3 43.9 rel 56.7 25.1 53.6 - 43.9 44.8
skt 56.0 20.7 45.3 54.9 - 44.2 skt 58.7 21.8 48.1 57.1 - 46.4
Avg 46.9 21.4 41.7 52.9 38.3 40.2 Avg 49.2 22.4 43.4 55.2 40.2 42.1

DomainNet: Table 8 shows the results of the proposed method on DomainNet across five domains. We compare our
results with ADDA and MCD and show that CDAN achieves much higher performance on DomainNet compared to other
techniques. It can be seen that CDAN w/ SDAT further improves the overall accuracy on DomainNet by 1.8%.
We have shown results with three different domain adaptation algorithms namely DANN [16], CDAN [34] and CDAN+MCC
[27]. SDAT has shown to improve the performance of all the three DA methods. This shows that SDAT is a generic method
that can applied on top of any domain adversarial training based method to get better performance.

Source-only: Source-only setting measures the performance of a model trained only on source domain directly on unseen
target data with no further target adaptation. We compare the performance of models with and without smoothing the loss
landscape for source-only experiments on VisDA-2017 (Table 9) and Office-Home (Table 10) datasets with a ViT backbone
pretrained on ImageNet. Initial learning rate of 0.001 and 0.002 is used for Office-Home and VisDA-2017 dataset, respec-
tively. ρ value of 0.002 is used for ERM w/SAM run for both the datasets. It can be seen that ERM w/ SAM does not directly
lead to better performance on the target domain.

Table 9. Accuracy (%) of source-only model trained with SGD (ERM) and SAM (ERM w/SAM) on VisDA-2017 for unsupervised DA
with ViT-B/16 backbone

Method plane bcybl bus car horse knife mcyle persn plant sktb train truck mean
ERM 98.4 58.3 80.2 60.7 89.3 53.6 88.4 40.8 62.8 87.4 94.7 19.1 69.5
ERM w/ SAM 98.6 33.1 80.0 76.9 90.1 35.9 94.2 22.8 77.8 89.0 95.3 11.6 67.1



Table 10. Accuracy (%) of source-only model trained with SGD (ERM) and SAM (ERM w/SAM) on Office-Home for unsupervised DA
with ViT-B/16 backbone

Method Ar)Cl Ar)Pr Ar)Rw Cl)Ar Cl)Pr Cl)Rw Pr)Ar Pr)Cl Pr)Rw Rw)Ar Rw)Cl Rw)Pr Avg
ERM 51.5 80.8 86.0 74.8 80.2 82.6 71.8 51.0 85.5 79.5 55.0 87.9 73.9
ERM w/ SAM 50.8 79.5 85.2 72.6 78.4 81.4 71.8 49.6 85.2 79.0 52.8 87.2 72.8
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Figure 4. A) Error on Target Domain (y-axis) for Office-Home dataset against maximum eigenvalue λmax of classification loss in DAT.
When compared to SGD, Adam converges to a non-smooth minima (high λmax), leading to a high error on target. Using Adam in
comparison to SGD, converges to a non-smooth minima (high λmax) leading to high error on target. B) Domain Accuracy (vs iterations),
it is lower when adversarial loss is smooth (i.e. SDAT w/ adv), which indicates suboptimal discrepancy estimation dΦs,t C) Target Accuracy
on Art → Clipart vs smoothness of the adversarial component. As the smoothness increases (ρ), the target accuracy decreases indicating
that smoothing adversarial loss leads to sub-optimal generalization.

H. Different Smoothing Techniques

Stochastic Weight Averaging (SWA) [25]: SWA is a widely popular technique to reach a flatter minima. The idea behind
SWA is that averaging weights across epochs leads to better generalization because it reaches a wider optima. The recently
proposed SWA-Densely (SWAD) [6] takes this a step further and proposes to average the weights across iterations instead of
epochs. SWAD shows improved performance on domain generalization tasks. We average every 400 iterations in the SWA
instead of averaging per epochs. We tried averaging across 800 iterations as well and the performance was comparable.
Difference between SWAD and SDAT: As SWAD performs Weight Averaging, it is not possible to selectively smooth only
minimization (ERM) components with SWAD, as gradients for both the adversarial loss and ERM update weights of the
backbone. Due to this, SWAD cannot reach optimal performance for DAT. For verifying this, we also compare our method
by implementing SWAD for Domain Adaptation on four different source-target pairs of Office-Home dataset in Table 18. On
average, SDAT (Ours) gets 61.6% (+2.4% over DAT) accuracy in comparison to 60.4% (+1.2% over DAT) for SWAD.
Virtual Adversarial Training (VAT) [36]: VAT is regularization technique which makes use of adversarial perturbations.
Adversarial perturbations are created using Algo. 1 present in [36]. We added VAT by optimizing the following objective:

min
θ

Ex∼PS
[ max
||r||≤ϵ

DKL(hθ(x)||hθ(x+ r))] (22)

This value acts as a negative measure of smoothness and minimizing this will make the model smooth. For training, we set
hyperparameters ϵ to 15.0, ξ to 1e-6, and α as 0.1.
Label Smoothing (LS) [46]: The idea behind label smoothing is to have a distribution over outputs instead of one hot
vectors. Assuming that there are k classes, the correct class gets a probability of 1 - α and the other classes gets a probability
of α/(k−1) . [45] mention that label smoothing tends to avoid sharper minima during training. We use a smoothing parameter
(α) of 0.1 in all the experiments in Table 11. We also show results with smoothing parameter of 0.2 and observe comparable
performance. We observe that label smoothing slightly improves the performance over DAT.
SAM [15]: In this method, we apply SAM directly to both the task loss and adversarial loss with ρ = 0.05 as suggested in the
paper. It can be seen that the performance improvement of SAM over DAT is minimal, thus indicating the need for SDAT.



Table 11. Different Smoothing techniques. We refer to [45] to compare the proposed SDAT with other techniques to show the efficacy of
SDAT. It can be seen that SDAT outperforms the other smoothing techniques significantly. Other smoothing techniques improve upon the
performance of DAT showing that smoothing is indeed necessary for better adaptation.

Method Ar)Cl Cl)Pr Rw)Cl Pr)Cl
DAT 54.3 69.5 60.1 55.3
VAT 54.6 70.7 60.8 54.4
SWAD-400 54.6 71.0 60.9 55.2
LS (α = 0.1) 53.6 71.6 59.9 53.4
LS (α = 0.2) 53.5 71.2 60.5 53.2
SDAT 55.9 73.2 61.4 55.9

I. Optimum ρ value

Table 12 and 13 show that ρ = 0.02 works robustly across experiments providing an increase in performance (although it
does not achieve the best result each time) and can be used as a rule of thumb.

Table 12. ρ value for DomainNet

Split DAT SDAT(ρ = 0.02) SDAT - Reported (ρ = 0.05)
clp)skt 44.9 46.7 47.2
skt)clp 56.0 59.0 58.7
skt)pnt 45.3 47.8 48.1
inf)rel 43.6 47.3 48.1

Table 13. ρ value for VisDA-2017 Synthetic ) Real

Backbone DAT SDAT (ρ = 0.02) SDAT Reported(ρ = 0.005)
CDAN 76.6 78.2 78.3
CDAN+MCC 80.4 80.9 81.2

J. Comparison with TVT

TVT [53] is a recent work that reports performance higher than the other contemporary unsupervised DA methods on
the publicly available datasets. This method uses a ViT backbone and focuses on exploiting the intrinsic properties of ViT
to achieve better results on domain adaptation. Like us, TVT uses an adversarial method for adaptation to perform well
on the unseen target data. On the contrary, they introduce additional modules within their architecture. The Transferability
Adaption Module (TAM) is introduced to assist the ViT backbone in capturing both discriminative and transferable features.
Additionally, the Discriminative Clustering Module (DCM) is used to perform discriminative clustering to achieve diverse
and clustered features.

Even without using external modules to promote the transferability and discriminability in the features learned using ViT,
we are able to report higher numbers than TVT. This advocates our efforts to show the efficacy of converging to a smooth
minima w.r.t. task loss to achieve better domain alignment. Moreover, TVT uses a batch size of 64 to train the network,
causing a memory requirement of more than 35GB for efficient training, which is significantly higher than the 11.5GB
memory used by our method on a batch-size of 24 for Office-Home to obtain better results. This allows our method to
be trained using a standard 12GB GPU, removing the need of an expensive hardware. The ViT backbone used by TVT is
pretrained on a much larger ImageNet-21k dataset, whereas we use the backbone pretrained on ImageNet-1k dataset.

K. Significance and Stability of Empirical Results

To establish the empirical results’ soundness and reliability, we run a subset of experiments (representative of each dif-
ferent source domain) on DomainNet. The experiments are repeated with three different random seeds leading to overall 36
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Figure 5. Validation Accuracy across epochs on different splits of DomainNet. We run on three different random seeds and plot the error
bar indicating standard deviation across runs. CDAN w/ SDAT consistently outperforms CDAN across different splits of DomainNet.

experimental runs (18 for CDAN w/ SDAT (Our proposed method) and 18 for CDAN baseline). Due to the large compu-
tational complexity of each experiment (≈20 hrs each), we have presented results for multiple trials on a subset of splits.
We find (in Table 14) that our method can outperform the baseline average in each of the 6 cases, establishing significant
improvement across all splits. However, we found that due to the large size of DomainNet, the average increase (across three
different trials) is close to the reported increase in all cases (Table 14), which also serves as evidence of the soundness of
reported results (for remaining splits). We also present additional statistics below for establishing soundness.

If the proposed method is unstable, there is a large variance in the validation accuracy across epochs. For analyzing the
stability of SDAT, we show the validation accuracy plots in Figure 5 on six different splits of DomainNet. We find that our
proposed SDAT improves over baselines consistently across epochs without overlap in confidence intervals in later epochs.
This also provides evidence for the authenticity and stability of our results. We also find that in some cases, like when using
the Infographic domain as a source, our proposed SDAT also significantly stabilizes the training (Figure 5 inf ) clp).

One of the other ways of reporting results reliably proposed by the concurrent work [3] (Section 4.4) involves reporting
the median of accuracy across the last few checkpoints. The median is a measure of central tendency which ignores outlier
results. We also report the median of validation accuracy for our method across all splits for the last five epochs. It is
observed that we observe similar gains for median accuracy (in Table 15) as reported in Table 2.

As the Office-Home dataset is smaller (i.e., 44 images per class) in comparison to DomainNet we find that there exists
some variance in baseline CDAN results (This is also reported in the well-known benchmark for DA [28]). For establishing
the empirical soundness, we report results of 4 different dataset splits on 3 seeds. It can be seen in Table 16 that even though
there is variance in baseline results, our combination of CDAN w/ SDAT can produce consistent improvement across different
random seeds. This further establishes the empirical soundness of our procedure.



Table 14. DomainNet experiments over 3 different seeds (with ResNet backbone). We report the mean, standard deviation, reported
increase and average increase in the accuracy (in %).

Split CDAN CDAN w/ SDAT Reported Increase (Table 2) Average Increase
clp)pnt 38.9 ± 0.1 41.5 ± 0.3 +2.6 +2.6
skt)rel 55.1 ± 0.2 57.1 ± 0.1 +2.2 +2.0
pnt)clp 44.5 ± 0.3 47.1 ± 0.3 +3.4 +2.6
rel)skt 42.4 ± 0.4 43.9 ± 0.1 +1.6 +1.5
clp)skt 44.9 ± 0.2 47.3 ± 0.1 +2.3 +2.4
inf)clp 31.4 ± 0.5 34.2 ± 0.3 +2.3 +2.7

Table 15. Median accuracy of last 5 epochs on DomainNet dataset with CDAN w/ SDAT. The number in the parenthesis indicates the
increase in accuracy with respect to CDAN.

Target (→) clp inf pnt real skt AvgSource (↓)

clp - 21.9 41.6 56.5 46.4 41.6
(+1.7) (+3.0) (+1.3) (+2.0) (+2.0)

inf 32.4 - 29.8 46.7 25.6 33.6
(+7.9) (+7.0) (+12.7) (+5.4) (+8.2)

pnt 47.2 21.0 - 57.6 41.5 41.8
(+2.9) (+1.1) (+1.0) (+2.4) (+1.8)

real 56.5 25.5 53.9 - 43.5 44.8
(+0.7) (+0.9) (+0.5) (+1.3) (+0.8)

skt 59.1 22.1 48.2 56.6 - 46.5
(+3.0) (+1.7) (+3.1) (+2.9) (+2.7)

Avg 48.8 22.6 43.4 54.3 39.2 41.7
(+3.6) (+1.3) (+3.4) (+4.5) (+2.8) (+3.1)

Table 16. Office-Home experiments over 3 different seeds (with ResNet-50 backbone). We report the mean, standard deviation, reported
increase and average increase in the accuracy (in %).

Split CDAN CDAN w/ SDAT Reported Increase (Table ??) Average Increase
Ar)Cl 53.9 ± 0.2 55.5 ± 0.2 +1.7 +1.6
Ar)Pr 70.6 ± 0.4 72.1 ± 0.4 +1.6 +1.5
Rw)Cl 60.7 ± 0.5 61.8 ± 0.4 +1.3 +1.1
Pr)Cl 54.7 ± 0.4 55.5 ± 0.4 +0.6 +0.8

L. PyTorch Pseudocode for SDAT
In the code snippet below, we show that with a few changes in the code, SDAT can be easily integrated with any DAT

algorithm. SDAT requires an additional forward pass and gradient computation, as shown below.
1# task_loss_fn refers to the function to calculate task loss.
2# (For classification settings, this can be Cross Entropy Loss).
3

4# optimizer refers to the smooth optimizer which contains parameters of the feature extractor and classifier.
5optimizer.zero_grad()
6# ad_optimizer refers to standard SGD optimizer which contains parameters of domain classifier.
7ad_optimizer.zero_grad()
8

9# Calculate task loss
10class_prediction, feature = model(x)
11task_loss = task_loss_fn(class_prediction, label)
12task_loss.backward()
13



14# Calculate ϵ̂ (w) and add it to the weights
15optimizer.first_step()
16

17# Calculate task loss and domain loss
18class_prediction, feature = model(x)
19task_loss = task_loss_fn(class_prediction, label)
20domain_loss = domain_classifier(feature)
21loss = task_loss + domain_loss
22loss.backward()
23

24# Update parameters (Sharpness-Aware update)
25optimizer.second_step()
26# Update parameters of domain classifier
27ad_optimizer.step()

M. Adaptation for object detection
To further validate our approach’s generality and extensibility, we did experiments on DA for object detection. We use

the same setting as proposed in DA-Faster [8] with all domain adaptation components and use it as our baseline. We use the
mean Average Precision at 0.5 IoU (mAP) as our evaluation metric. In object detection, the smoothness enhancement can be
achieved in two ways (empirical comparison in Sec. M.2) :

a) DA-Faster w/ SDAT-Classification: Smoothness enhancement for classification loss.
b) DA-Faster w/ SDAT: Smoothness enhancement for the combined classification and regression loss.

M.1. Experimental Setup

We evaluate our proposed approach on object detection on two different domain shifts:
Pascal to Clipart (P → C): Pascal [14] is a real-world image dataset which consists images with 20 different object

categories. Clipart [24] is a graphical image dataset with complex backgrounds and has the same 20 categories as Pascal. We
use ResNet-101 [21] backbone for Faster R-CNN [40] following [42].

Cityscapes to Foggy Cityscapes (C → Fc): Cityscapes [10] is a street scene dataset for driving, whose images are
collected in clear weather. Foggy Cityscapes [44] dataset is synthesized from Cityscapes for the foggy weather. We use
ResNet-50 [21] as the backbone for Faster R-CNN for experiments on this task. Both domains have the same 8 object
categories with instance labels.

M.2. Results

Table 17 shows the results on two domain shifts with varying batch size (bs) during training. We find that only smoothing
w.r.t. classification loss is much more effective (SDAT-Classification) than smoothing w.r.t. combined classification and
regression loss (SDAT). On average, SDAT-Classification produces an mAP gain of 2.0% compared to SDAT, and 2.8%
compared to DA-Faster baseline.

Table 17. Results on DA for object detection.

Method C → Fc P → C P → C
(bs=2) (bs=2) (bs=8)

DA-Faster [8] 35.21 29.96 26.40
DA-Faster w/ SDAT 37.47 29.04 27.64
DA-Faster w/ SDAT-Classification 38.00 31.23 30.74

The proposed SDAT-Classification significantly outperforms DA-Faster baseline and improves mAP by 1.3% on P → C
and by 2.8% on C → Fc. It is noteworthy that increase in performance of SDAT-Classification is consistent even after
training with higher batch size (bs = 8) achieving improvement of 4.3% in mAP. Table 17 also shows that even DA-Faster
w/ SDAT (i.e. smoothing both classification and regression) outperforms DA-Faster by 0.9 % on average. The improvement
due to SDAT on adaptation for object detection shows the generality of SDAT across techniques that have some form of
adversarial component present in the loss formulation.

N. Discussion
How much smoothing is optimal?: Figure 6A shows the ablation on ρ value (higher ρ value corresponds to more

smoothing) on the Ar)Cl from Office-Home dataset with CDAN backbone. The performance of the different values of ρ is
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Figure 6. Analysis of SDAT for Ar → Cl split of Office-Home dataset. A) Variation of target accuracy with maximum perturbation ρ. B)
Comparison of accuracy of SDAT with DAT for different ratio of label noise. C) Comparison of accuracy when smoothing is applied to
various loss components.

Table 18. Performance comparison across different loss smoothing techniques on Office-Home. SDAT (with ResNet-50 backbone) outper-
forms other smoothing techniques in each case consistently.

Method Ar)Cl Cl)Pr Rw)Cl Pr)Cl Avg
DAT 54.3 69.5 60.1 55.3 59.2
VAT 54.6 70.7 60.8 54.4 60.1 (+0.9)
SWAD 54.6 71.0 60.9 55.2 60.4 (+1.2)
LS 53.6 71.6 59.9 53.4 59.6 (+0.4)
SAM 54.9 70.9 59.2 53.9 59.7 (+0.5)
SDAT 56.0 73.2 61.4 55.9 61.6 (+2.4)

higher than the baseline with ρ = 0. It can be seen that ρ = 0.02 works best among all the different values and outperforms
the baseline by at least 1.5%. We found that the same ρ value usually worked well across domains in a dataset, but different
ρ was optimal for different datasets. More details about optimum ρ is in App. I.

Which components benefit from smooth optima?: Fig. 6C shows the effect of introducing smoothness enhancement
for different components in DAT. For this we use SAM on a) task loss (SDAT) b) adversarial loss (SDAT w/ adv) c) both task
and adversarial loss (SDAT-all). It can be seen that smoothing the adversarial loss component (SDAT w/ adv) reduces the
performance to 51.0%, which is significantly lower than even the DAT baseline.

Is it Robust to Label Noise?: In practical, real-world scenarios, the labeled datasets are often corrupted with some
amount of label noise. Due to this, performing domain adaptation with such data is challenging. We find that smoother
minima through SDAT lead to robust models which generalize well on the target domain. Figure 6B provides the comparison
of SGD vs. SDAT for different percentages of label noise injected into training data.

Is it better than other smoothing techniques? To answer this question, we compare SDAT with different smoothing
techniques originally proposed for ERM. We specifically compare our method against DAT, Label Smoothing (LS) [46], SAM
[15] and VAT [36]. [45] recently showed that these techniques produce a significantly smooth loss landscape in comparison
to SGD. We also compare with a very recent SWAD [6] technique which is shown effective for domain generalization. For
this, we run our experiments on four different splits of the Office-Home dataset and summarize our results in Table 18. We
find that techniques for ERM (LS, SAM and VAT) fail to provide significant consistent gain in performance which also
confirms the requirement of specific smoothing strategies for DAT. We find that SDAT even outperforms SWAD on average
by a significant margin of 1.2%. Additional details regarding the specific methods are provided in App. H.

Does it generalize well to other DA methods?: We show results highlighting the effect of smoothness (SDAT) on
DANN [17] and GVB-GD [11] in Table 19 with ResNet-50 and ViT backbone. DANN w/ SDAT leads to gain in accuracy on
both DomainNet and Office-Home dataset. We observe a significant increase (average of +3.3%) with DANN w/ SDAT (ViT
backbone) on Office-Home dataset. SDAT leads to a decent gain in accuracy on Office-Home dataset with GVB-GD despite
the fact that GVB-GD is a much stronger baseline than DANN. We primarily focused on CDAN and CDAN + MCC for the
main results as we wanted to establish that SDAT can improve on even SOTA DAT methods for showing its effectiveness.
Overall, we have shown results with four DA methods (CDAN, CDAN+MCC, DANN, GVB-GD) and this shows that SDAT
is a generic method that can applied on top of any domain adversarial training based method to get better performance.



Table 19. Analysing the effect of SDAT on DANN (on DomainNet and Office-Home with ResNet-50 and ViT-B/16 respectively) and
GVB-GD (on Office-Home with ResNet-50).

DomainNet clp)pnt skt)pnt inf)real skt)clp

DANN

R
N

-5
0 37.5 43.9 37.7 53.8

DANN w/ SDAT 38.9 (+1.4) 45.7 (+1.8) 39.6 (+1.9) 56.3 (+2.5)

Office-Home Ar)Cl Cl)Pr Rw)Cl Pr)Cl
GVB-GD

R
N

-5
0

56.4 74.2 59.0 55.9
GVB-GD w/ SDAT 57.6 (+1.2) 75.4 (+1.2) 60.0 (+1.0) 56.6 (+0.7)

DANN 52.6 65.4 60.4 52.3
DANN w/ SDAT 53.4 (+0.8) 66.4 (+1.0) 61.3 (+0.9) 53.8 (+1.5)

DANN

V
iT 62.7 81.8 68.5 66.5

DANN w/ SDAT 68.0 (+5.3) 82.4 (+0.6) 73.4 (+4.9) 68.8 (+2.3)


