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1 Impact Discussion

In this paper, we present a simple yet effective training strategy, with a novel
concept of go-getting domain labels (Go-labels), for domain adaptation, which
significantly improves the performance of many adversarial based domain adapta-
tion variants while adding almost no extra computational cost. This method can
benefit any vision task where unsupervised domain adaptation (UDA) is required,
such as cross-domain scene parsing/segmentation [14, 17, 28], cross-domain per-
son re-identification [13, 1, 29, 9], cross-domain object retrieval [12, 11, 7] etc. It
can be used to boost the domain adaptation capability of these vision tasks,
and therefore these developed vision tasks will further promote the evolution
of many practical industrial applications, e.g., Autonomous Vehicle, Large-scale
Surveillance System, etc.

Our technique can also be useful when a model is required to have a life-long
learning ability [3, 20], because training model under the unsupervised domain
adaptation setting in a high-efficient way can help obtain an easy-to-learning and
easy-to-transfer model.

2 More Details about Toy Experiments

Random Point Classification. In the main manuscript, we observe the behavior
of our proposed training strategy of dynamic adversarial domain adaptation
method with go-getting domain labels (Go-labels) on toy problem of 2D random
point classification, in which we used numpy.random [19] to synthesize the toy
source and target samples that share the same label space for validation.

For the network structure, we use the totally same architecture for two schemes
of Baseline and Ours. We adopt a multilayer perceptron (MLP) [6] as the feature
extractor F (refer to Eq. (1) of the main manuscript for notation), which MLP
is composed of three fully connected layers with BatchNorm1d and ReLU layers
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for stable training. The category classifier C is an one-layer fully connected layer
followed by a sigmoid function to output the classification result (‘0’ – red point
or ‘1’ – green point). For the domain discriminator D (refer to Eq. (2) of the main
manuscript for notation), it is also composed of three fully connected layers with
inserted dropout and ReLU layers for stable training following [15, 2], followed
by a sigmoid function to output the domain classification result. A gradient
reversal layer (GRL) [4, 5, 15] is used to connect feature extractor F and domain
discriminator D to achieve the adversarial function by multiplying the gradient
from D with a certain negative constant during the back-propagation to the
feature extractor F .

For the basic optimization hyper-parameters, we employ stochastic gradient
descent (SGD) as optimizer with an initial learning rate of 0.01 train all the
schemes of Baseline and Ours. Batch size is set as 100 and total training epoch
is set as 10.
Inter-twinning Moons. For this toy problem, we conduct experiment fully
based on the codebase 6 released by [5], we recommend readers to get more
details from their original paper.

3 Code, Datasets, and Training Details

Source Code. We have uploaded the source code that corresponds to our
proposed dynamic adversarial domain adaptation method with go-getting domain
labels (Go-labels). Please find details and reproduce the main experimental results
in the uploaded materials of ‘Domain Adaptation with Go-labels.zip’.
Datasets. Here we further provide more details about the used datasets, including
Digit-Five, Office31, Office-Home, and VisDA-2017. Fig. 1 shows some samples
of some datasets.
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Fig. 1: Some examples covering different domains of datasets we used.

– (1) Digit-Five consists of five different digit recognition datasets: MNIST
[10], MNIST-M [4], USPS [8], SVHN [18] and SYN [4]. We follow the same
split setting as [21] to utilize such dataset.

– (2) Office31 [23] is the most widely used dataset for visual domain adaptation,
with 4,652 images and 31 categories collected from three distinct domains:
Amazon (A), Webcam (W) and DSLR (D). We evaluate all methods on six

6 https://github.com/GRAAL-Research/domain adversarial neural network
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transfer tasks A → W, D → W, W → D, A → D, D → A, and W → A,
respectively.

– (3) Office-Home [27] is a more difficult dataset (with relative large domain
discrepancy) than Office31. It consists of 15,500 images of 65 object classes in
office and home settings. It has four dissimilar domains: Artistic images (Ar),
ClipArt (Cl), Product images (Pr), and Real-World images (Rw). Among
the four domains, there are a total of 12 DA tasks.

– (4) VisDA-2017 [22] is a simulation-to-real dataset for UDA with over 280,000
images across 12 categories in the training, validation and testing domains.

Training. In all experiments, SGD with momentum is used as the optimizer
and the cosine annealing rule [16] is adopted for learning rate decay. All our
experiments are implemented on PyTorch and conducted on a single 12G NVIDIA
1080ti GPU.

For Digit-Five, the CNN backbone is constructed with three convolution
layers and two fully connected layers, termed as Cov3FC2 following [21]. For
each mini-batch, we sample 64 images for training. The model is trained with an
initial learning rate of 0.05 for totally 30 epochs.

For Office-31 and Office-Home, following [15, 30, 2], we use ResNet-50 as back-
bone. The initial learning rate is set to 1e-3. The input image size is 224×224 and
the batch size is 36. We train the models for 500 epochs (nearly 16,000 iterations)
and evaluate their adaptation performance. We use the default train/test/val
split protocol as [2, 15] for both the two datasets.

For VisDA-2017, following [15, 2], we also use ResNet-50 as backbone. The
initial learning rate is set to 1e-4. The input image size is 224×224, and the batch
size is 36. We follow the train/val/test split protocol of [2] and train the models
for 150 epochs.

4 More Experimental Results

4.1 Validation on Toy Problems

2D Random Point Classification. First, we observe the behavior of our
method on toy problem of 2D random point classification, in which we use
numpy.random [19] to generate the source and target samples that share the
same label space. For the source samples, we generate point samples with 2
classes, labeled as ‘0’ (marked as red) and ‘1’ (marked as green), respectively.
For each class, it contains 3 data clusters with different scales (i.e., large head
cluster has 10,000 samples, middle cluster has 5,000 samples, small tail cluster
has 200 samples), this design aims to simulate the data imbalance situation in
real-world, i.e., the problem Go-labels focused. For the target samples, we totally
generate 10,200 samples for each class. Each class has two clusters, one large
head cluster with 10,000 samples and one small tail cluster with 200 samples.
We compared the class decision boundary of our method with Baseline obtained
from the domain discriminator trained with immutable domain labels. To better
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Fig. 2: 2D random point classification. Red and green points indicate the samples
of class ‘0’ and ‘1’, respectively (left). The solid line denotes the class decision
boundary, and we use “color change” to indicate its changing trend (middle)
during the training process. Adaptation performance on the target set is shown
on right. For the fairness of comparison, the hyper-parameters, including learning
rates and total training iterations, are same for both baseline and our method
(see Supplementary for more details).

evaluate adaptation performance of the trained model, we visualize source and
target data separately. Other details are provided in Supplementary.

As shown in Fig. 2, the Baseline scheme is prone to miss the small tail cluster,
especially when it is very closed to a large cluster belonged to the different class.
In contrast, our method could better leverage both large/head and small/tail
data clusters in the different domains to reduce discrepancy. The trend of our
classification boundary in the source domain has demonstrated this point. As a
result, the adaptation performance on the target set of ours is obviously superior
to that of Baseline.

Inter-twinning Moons. Furthermore, we observe the behavior of Go-labels on
toy problem of inter-twinning moons [5, 25]. In particular, we additionally generate
some outlier samples near the center of each moon to mimic the imbalanced data
distribution. For the source data, a lower moon and an upper moon are generated,
and labeled as ‘0’ and ‘1’. Each of them is accompanied by two extra outliers,
totally 152 samples. Target data are generated by re-sampling from the source
distribution. Then, we rotate each sample by 35◦ and remove its label to obtain
an unlabeled target set. We compare our method with the model trained with
source data only and DANN [5] in the Fig. 3. We observe that both baselines
of Source only and DANN neglect the outlier samples. In contrast, our method
not only gets a satisfactory classification boundary between two classes in the
source domain, but also covers these minority tail data well and classifies them
to the correct class. Besides, after performing PCA, we can see that our method
also achieves a better feature alignment in comparison with other two baselines,
where target samples that denoted as black points are homogeneously spread out
among source points.

Feature Distributions Visualization. Here, we further visualize the learned
feature distributions by t-SNE [24] for W→A setting of Office31 in Fig. 4. We
observe the scheme of Source Only that without considering domain adaptation
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Fig. 3: The second toy game of inter-twinning moons. Red “+”, green “-”, and
black “·” markers indicate the source positive samples (label 1), source negative
samples (label 0), and target samples, respectively. (a) The solid black line is the
class decision boundary. (b) We also show the feature alignment situations of
different schemes via a principal components analysis (PCA) transformation.

only works well in source domain but poorly in target domain. The adversarial
training based baseline scheme of DANN [5] aligns most samples in the source
and target domains well. When applying the proposed go-getting domain label
(Go-labels) technique into DANN, the scheme of DANN + Go-labels (ours)
achieves a much better domain alignment results, where the clusters with the
same class are more compact and less data points scatter at the boundaries
between clusters. This group of visualization results validates the effectiveness of
our Go-labels for adversarial domain adaptation.

Source Only DANN (Baseline) DANN + Go-labels (ours)

Fig. 4: Visualization of t-SNE distributions, where samples are from source
webcam (W) and target amazon (A) domains of Office31.

Feature Map Visualization. Except t-SNE visualization results, in Fig. 5, we
also visualize the learned feature maps of DANN (Baseline) and DANN + Go-
labels (ours) by Grad-CAM [26] w.r.t. object category classification. This group
of experimental visualization aims to explore whether the go-getting domain label
(Go-labels) could help the feature extractor to learn better domain-invariant
and object-focus visual representations. We see that the baseline scheme DANN
(Baseline) is prone to ignore some discriminative regions, which impedes the
transferability across domains. In contrast, with Go-labels, the learned feature
representations could better focus on the discriminative regions that related to
foreground objects, enabling a higher classification accuracy.
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Fig. 5: Visualization of inner feature maps, where samples are also from source
webcam (W) and target amazon (A) domains of Office31.
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