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Abstract

Predictive performance of machine learning models
trained with empirical risk minimization (ERM) can de-
grade considerably under distribution shifts. The presence
of spurious correlations in training datasets leads ERM-
trained models to display high loss when evaluated on mi-
nority groups not presenting such correlations. Extensive
attempts have been made to develop methods improving
worst-group robustness. However, they require group infor-
mation for each training input or at least, a validation set
with group labels to tune their hyperparameters, which may
be expensive to get or unknown a priori. In this paper, we
address the challenge of improving group robustness with-
out group annotation during training or validation. To this
end, we propose to partition the training dataset into groups
based on Gram matrices of features extracted by an “iden-
tification” model and to apply robust optimization based
on these pseudo-groups. In the realistic context where no
group labels are available, our experiments show that our
approach not only improves group robustness over ERM but
also outperforms all recent baselines.

1. Introduction

Imagine crowd-sourcing an image dataset of camels and
cows [4]. Due to selection biases, a high majority of cows
stand in front of grass environments and camels in the
desert. Therefore, a simple way to differentiate cows from
camels would be to classify the background. Such a con-
founding factor is called a spurious correlation. Empiri-
cal Risk Minimization (ERM), the most standard machine
learning formulation, will naturally exploit this undesirable
shortcut and hence perform poorly on minority groups that
do not display the same spurious correlation [8,11,28], e.g.,
a cow standing in the desert. This paper addresses the prob-
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Figure 1. Overview of the proposed approach for robust classi-
fication with unsupervised group discovery. (1) We first extract
deep image features using an identification model and (2) we clus-
ter the training dataset based on their feature Gram matrices (their
“style”’); (3) then, we train the targeted classifier with a robust op-
timization that exploits the assigned pseudo-group labels.

lem of learning a robust classifier, which would not confuse
a cow standing in the desert with a camel, despite having no
access to any explicit prior environment knowledge.

Extensive attempts have been made to develop new train-
ing objectives that are robust to spurious correlations, e.g.,
by ensuring high worst-group accuracy. IRM [3] aug-
ments the standard ERM term with invariance penalties
across data from different groups. Similarly, [2] promotes,
through a simple penalty, identical prediction behaviour
across groups. Other works such as [24, 30] minimize
explicitly the worst-group loss during training; [25] re-
balances majority and minority groups via re-weighting and
sub-sampling. However, these approaches require a prior
knowledge about the confounding factors during training.
This is a major limitation since these factors might be a pri-
ori unknown and, if known, ambiguous to define and expen-
sive to annotate.

Recent works [2,6,21,23,27] rely on two-stage schemes,
first automatic environment discovery then robust optimiza-



tion based on environment pseudo-labels. Environment In-
ference for Invariant Learning (EIIL) [6] derives a group
inference objective from a trained identification model that
maximizes variability across environments, and is differ-
entiable w.r.t. a distribution over group assignments. Just
Train Twice (JJT) [21] is a simple method in which envi-
ronments are defined by images on which a trained identi-
fication model performs poorly. GEORGE [27] is based on
an unsupervised clustering algorithm in the feature space
of a trained identification model. However, all these ap-
proaches still require the availability of ground-truth envi-
ronment labels on a validation set in order to properly tune
their hyperparameters.

In the computer vision literature, many identified spuri-
ous correlations are closely related to visual aspects, such
as background [4], texture [10], image style [13], physi-
cal attributes [22] or camera characteristics [16]. In this
work, we assume that relevant environment labels can be
inferred from visual feature statistics. We propose a two-
stage approach, GRAMCLUST, that first assigns a group la-
bel, i.e., a class-environment pair label, by partitioning a
training dataset into style-based clusters and then trains a ro-
bust classifier based on these pseudo-group labels. Our ap-
proach is summarized in Fig. 1. The clustering is performed
on the Gram matrices of features extracted by an exoge-
nous specifically-trained identification model. Instrumental
to the impressive success of style transfer techniques [9],
Gram matrices are first and foremost second-order moments
of neural activation. Recent work [19] demonstrates that
matching Gram matrices is actually equivalent to distribu-
tion alignment using the Maximum Mean Discrepancy dis-
tance with the second-order polynomial kernel. Therefore,
our method can be interpreted as grouping images into clus-
ters of similar feature distributions that are likely candidates
for environments. The empirical success of our method on
various datasets supports that feature Gram matrices capture
more complex visual attributes than just style texture.

Our contributions are: An easy-to-scale method to split
the training images among distinct pseudo-environments,
based on feature Gram matrices; A group-robust learning
method, GRAMCLUST, that completely alleviates the need
of ground-truth group labels, even in the validation set; Per-
formances on standard image classification datasets with
spurious correlations that surpass all recent baselines ad-
dressing robustness without group annotation.

2. GRAMCLUST

Our method, GRAMCLUST, is made of two main steps.
First, we discover pseudo-environments among the images
of a given dataset. Second, we train a robust classifier that
leverages the inferred pseudo-environments labels to reduce
classification errors due to spurious environment correla-
tions. Last, unlike previous approaches, we perform hyper-

parameters tuning of our method, without the need of any
true group labels on the validation set.

In the following, we assume access to a training dataset
D = {(xi, yi)}Ni=1 composed of N images xi with label
yi ∈ {1 · · ·K}.

Environment discovery. Previous work [21] observed
that ERM tends to fit models on data presenting easy-to-
learn spurious correlations at the beginning of the learning
process. We hence train for a few iterations an exogeneous
“identification model” –a convolutional neural network Φ
composed of L layers with parameters ω, pre-trained on
ImageNet [7]– by empirical loss minimization:

min
ω

1

N

N∑
i=1

ℓ(Φ(xi,ω), yi), (1)

where the cross-entropy loss ℓ is applied between the
model’s prediction Φ(xi,ω) and the true label yi for sam-
ple xi. After this initial training, and in the rest of the paper,
the parameters ω of the identification model Φ are frozen.

We now turn to feature-based clustering. We denote the
feature map of an image x at layer l of Φ by ϕl(x) ∈
RMl×Cl , where Cl is the number of channels and Ml is
the spatial dimension of the feature map. For each image
xi, we extract its feature maps at S ⩽ L different and fixed
layers l1, . . . , lS , and compute the Gram matrices defined
as:

Gl(xi)=
1

Ml
ϕl(xi)

⊺ϕl(xi) ∈ RCl×Cl , l = l1 · · · lS . (2)

We then vectorize and normalize each of these S Gram
matrices:

fi,l = vec(Gl(xi))/ ∥vec(Gl(xi))∥2 ∈ RC2
l . (3)

The normalization permits us to balance evenly the contri-
bution of each Gram matrix in the clustering loss. The “en-
vironment” of each image xi is thus encoded by the vector
fi = [fi,l1 ; · · · ;fi,lS ] ∈ RD, where D =

∑lS
l=l1

C2
l . We

discover E′ environments by clustering the N training im-
ages into E′ clusters C1, . . . , CE′ , via k-means clustering,
i.e., by computing a solution to:

min
C1···CE′

E′∑
e=1

1

|Ce|
∑

i,j∈Ce

∥fi − fj∥22 , (4)

where ∥fi − fj∥22 =
∑lS

l=l1
∥fi,l − fj,l∥22.

To overcome the computational cost of storing all these
vectors and computing distances between them in high di-
mension, we perform random projections of the vectors fi,l

in a lower-dimensional space as proposed in [1] (see more
details in the supplementary material)
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Robust optimization with pseudo-groups labels. As
a results of the clustering, each training image is now
equipped with a pseudo-environment label ê ∈ {1 · · ·E′}.
Combined with its class label, this provides a pseudo-group
label ĝ = (ê, y). The training set being now partitioned into
pseudo-groups, we train a robust classifier h, distinct from
Φ, with parameters θ, by minimizing the worst-group risk
(GroupDRO [24]):

min
θ

{
max
(e,k)

1

|De,k|
∑

i∈{1···N}:
êi=e,yi=k

ℓ
(
h(xi,θ), yi

)}
, (5)

based on the cross-entropy loss ℓ, where De,k ⊂ D denotes
the set of samples with pseudo-group label ĝ = (e, k).

Hyperparameters tuning without group annotation.
Unlike previous approaches [2, 6, 27] that need true group
labels in the validation set to define and assess worst-group
performance as the metric to set hyperparameters, we first
partition the validation set using the clusters found on the
training set and then conduct cross-validation based on the
resulting pseudo-groups. In our experiments, we observe
that this type of model selection is effective to achieve
proper group robustness.

3. Experiments

Firstly, we empirically show that GRAMCLUST outper-
forms, on three datasets, other baselines addressing robust-
ness without group annotation. Secondly, we present an em-
pirical analysis of our approach, including: the importance
of using Gram matrices to capture style, the impact of the
choice of layers to extract features from, and the impact of
the number of clusters. The code will be published if the
paper is accepted.

Datasets. We experiment with three standard image clas-
sification datasets on which previous works evaluate worst-
group performance: Waterbirds [24] is a dataset com-
posed of bird photographs from the CUB dataset [29] super-
imposed on background scenes taken from the Places365
dataset [31]. The target labels are “landbird” and “water-
bird” which are spuriously correlated with the background
images of either “land” or “water”. We evaluate on the test
set with the average accuracy and the worst-group accuracy
(“waterbird” on “land”); CelebA [22] is a celebrity large-
scale face dataset with 202,599 natural images. There exists
a spurious correlation between the hair color and the gender
(“male” or “female”) of a person. We evaluate on the test
set with the average accuracy and the worst-group accuracy
(“male” with “blond” hair); COCO-on-Places-224 is the
same dataset as in [2] but with images resized to 224× 224

(instead of 64× 64 in the original paper). There are 10 seg-
mented COCO [20] objects superimposed on scenes from
the Places365 dataset. This time, a group of backgrounds
are spuriously correlated with each object at training time.
We evaluate the accuracy on a first test set with objects
on the same backgrounds as during training, called the in-
distribution set (‘ind’), and on a second test set with objects
on unseen backgrounds, dubbed the systematically-shifted
set (‘sys’).

Baselines. We compare our approach against the standard
ERM baseline and recent methods that aim at robust pre-
dictions across groups without the use of train group an-
notations (EIIL [6], GEORGE [27] and JTT [21]). We
also include robust methods that use true group annotations
at train time (IRM [3], importance weighting and Group-
DRO [24]). The latter methods and ERM were already
implemented and we took care to reproduce results for all
methods. Note that our approach and GroupDRO share the
same robust optimization objective.

Training details. All methods use a ResNet-50 architec-
ture pre-trained on ImageNet [7] as the robust classifier
(classifier h in Section 2). Models are optimized using SGD
with momentum. For GroupDRO and ERM, we use the hy-
perparameters reported by the authors on Waterbirds and
CelebA datasets. Note that hyperparameters have been se-
lected with the use of a validation set with group labels. Re-
garding our approach, we select a VGG-19 [26] architecture
for the identification model (Φ in Section 2) and train it for
1 epoch using SGD with momentum. Among usual layers
used to compute style representations in neural style trans-
fer, we observed improved performance by selecting deeper
layers in the network: for each dataset, we consistently ex-
tract features from the conv5 1 layer, i.e., the first convolu-
tional layer of block 5. We include results with two types
of model: (i) based on validation set with true-group anno-
tations (‘GRAMCLUST-orig’); (ii) based on pseudo-group
labels (‘GRAMCLUST-cv’) predicted by our clustering.

Comparatives results. We report quantitative compar-
isons on Waterbirds, CelebA and COCO-on-Places-224 in
Table 1. First, we observe that GRAMCLUST improves
worst-group test accuracy over ERM baseline on Waterbirds
and CelebA and sys accuracy on COCO-on-Places224.
More importantly, GRAMCLUST-cv achieves state-of-the-
art performances on group robustness compared to all meth-
ods that do not use group labels on the training set. On
CelebA, which is a large-scale datasets with natural images,
our approach outperforms the previous best, JTT [21], by

1Results with JTT differ from the original paper as the scores that we
report correspond to models trained without early-stopping. The authors
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Table 1. Comparative results on Waterbirds, CelebA and
COCO-on-Places-224. Worst-group (w-g) and average (avg) test
accuracies (% mean and std.) for Waterbirds and CelebA datasets;
systematically-shifted (sys) and in-distribution (ind) test-set accu-
racies (% mean and std.) for COCO-on-Places dataset. Exper-
iments with ResNet-50 models. Underlined and bold type indi-
cate respectively best and per-block best performance (with sig-
nificance p< 0.05 according to paired t-test on five runs).

Grp labels Waterbirds CelebA COCO-on-Places
Method train val w-g avg w-g avg sys ind

ERM ✓ 65.0±2.7 97.3±0.1 42.4±1.5 94.8±0.1 71.9±0.3 95.5±0.1

IRM [3] ✓ ✓ 77.4±0.3 97.3±0.1 75.1±0.6 94.5±0.1 78.8±0.3 95.1±0.2

Imp. Weighting ✓ ✓ 74.4±0.6 97.4±0.1 72.4±1.4 94.4±0.2 71.7±0.5 93.7±0.2

GroupDRO [24] ✓ ✓ 83.9±0.3 96.8±0.1 85.7±2.0 93.7±0.2 79.0±0.4 95.2±0.2

EIIL [6] ✓ 78.7±0.3 96.9±0.1 - - 68.5±0.4 94.8±0.3

GEORGE [27] ✓ 76.2±2.0 95.7±0.5 53.7±1.3 94.6±0.2 71.6±0.3 95.1±0.1

JTT1 [21] ✓ 82.9±0.3 96.4±0.2 56.0±0.7 93.6±0.0 69.2±0.4 94.7±0.3

GRAMCLUST-orig ✓ 85.3±1.1 96.6±0.1 77.9±2.2 94.2±0.2 72.4±0.4 95.0±0.2

GRAMCLUST-cv 85.3±1.1 96.6±0.1 80.3±1.9 93.4±0.1 73.2±0.3 95.3±0.3

21.9 pts. We were not able to scale EIIL [6] on this dataset
due to memory overflow issues. Note that GRAMCLUST-
orig uses the same hyperparameters as EIIL, GEORGE and
JTT for robust training of the target classifier from predicted
group labels, and still displays significant improvements.
Surprisingly, GRAMCLUST-cv and GRAMCLUST-orig out-
perform GroupDRO on Waterbirds with 85.3% vs. 83.9%,
while the latter method uses true-group labels during train-
ing. This may be due to the ambiguity of the background in
some Waterbirds images.

Importance of Gram matrices. Since [15] uses the
channel-wise mean and variance of image features to per-
form style transfer, we compare the use of such style statis-
tics (‘MeanVar’) against our use of Gram matrices in Ta-
ble 2. MeanVar reaches test worst-group accuracy on-par
with Gram matrix on Waterbirds but degrades significantly
performances on CelebA. Gram matrices provide more in-
formation than MeanVar as their diagonals already contain
the information about the channel-wise mean and variance
of the deep features (see Eq. 2). Hence, these results show
that, when scaling on large and natural-image datasets such
as CelebA, keeping all the correlations between different
channels is important for group robustness.

Choice of layers for clustering features. We also com-
pared our use of VGG-19 conv5 1 features to capture style
with the direct use of the penultimate (‘AvgPool’) represen-
tation of a more modern ResNet-50 identification model.
Note that, while dating back to 2015, VGG features are
still successfully used through their Gram matrices, e.g.

select models before convergence (around epoch 3) with low average ac-
curacy on the test set but high worst-group accuracy

Table 2. Comparison of ways to capture style. Results in worst-
group (Waterbirds, CelebA) and systematically-shifted (COCO-
on-Places) test-set accuracies (%). Gram matrices are more effec-
tive at capturing style toward improved group robustness.

Style feat. Arch. Layer Waterbirds CelebA COCO-on-P

Standard ResNet-50 AvgPool 76.2±2.0 53.7±1.3 71.6±0.3

MeanVar VGG-19 Conv5 1 85.3±1.2 69.8±1.0 71.4±0.5

Gram matrix VGG-19 Conv5 1 85.3±1.1 77.9±2.2 72.4±0.4

Figure 2. Impact of the layer used
by GRAMCLUST to extract style.
Group matching accuracy (with Hun-
garian algorithm) on the validation set
on Waterbirds.

Figure 3. Impact of
cluster number. GRAM-
CLUST’s Worst-group val
accuracies on Waterbirds.

in [5, 14, 18]. In Table 2, we observe that using the penul-
timate layer of a ResNet-50 as style representation for the
clustering produces poorer performance.

Clustering analysis. We study the behavior of our clus-
tering algorithm w.r.t. the layers selected to extract features
and to the number of clusters. This analysis is conducted on
the Waterbirds dataset.

First, we evaluate the impact of the selection of VGG-
19 layers to extract the features in the clustering stage.
To this end, we study the matching of the predicted en-
vironments to the true environment labels on the val-
idation via Hungarian matching [17] and measure the
global matching accuracy across all validation samples
for each five layers commonly used in neural style trans-
fer (conv1 1,conv2 1,conv3 1,conv4 1,conv5 1). Results in
Figure 2 show that: Features from deeper layers correlate
with better matching accuracy; Our approach is robust to
the choice of deep layers either taken together (allconvX 1)
or individually such as conv4 1 and conv5 1; Using conv5 1
outperforms selecting all traditional style layers. Consistent
conclusions are found on the CelebA dataset (see Supple-
mentary material).

Second, we study the impact of the number of clusters as
hyperparameter in the clustering algorithm. Worst-group
accuracy on the validation set for E′ ∈ {2, 4, 8, 16, 32}
clusters are reported in Figure 3. Or method is robust to
a variation in the number of clusters: GRAMCLUST with
more clusters than actual environments produces a slight
drop in performance but still improves performance over
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ERM and remains on-par performances with GroupDRO.

4. Conclusion
In this paper, we introduce GRAMCLUST, a two-stage

method that first partitions a training dataset into style-
based clusters via k-means algorithm based on Gram ma-
trices computed from features, themselves extracted from
an identification model trained to catch spurious correla-
tions of a biased dataset. This first stage is then followed by
learning a robust classifier by minimizing the error on the
worst pseudo-group labels previously discovered. GRAM-
CLUST demonstrates to be an effective approach to tackle
group robustness and outperforms every single baseline on
standard datasets with spurious correlations. The usage of
feature Gram matrices is of primary importance to correctly
characterize the environment of the image and enables a rel-
evant partition for robust training. Our approach also allevi-
ates the need to label a small validation set of images with
group information and is able to tune its hyperparameters
without group supervision by applying its clustering algo-
rithm on the validation set.
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Appendices
A. Details on random projection

Storing all flattened Gram matrices and computing dis-
tances between them in a high-dimensional space is com-
putationally and memory expensive on large datasets. We
overcome this difficulty by projecting the vectors fi,l

(Eq. 3) in a lower-dimensional space as proposed in [1]. We
build a matrix P ∈ Rℓ0×D whose entries Pmn are the re-
alisation of independent random variables: Pmn = 1 or
Pmn = −1 with probability 1/2. Then we compute

f̃i,l =
1√
ℓ0
Pfi,l (6)

and substitute f̃i,l for fi,l in Eq. 4. We justify this choice
by the fact that this projection preserves the distances
∥fi,l − fj,l∥22 involved in the k-means objective. Indeed,
let ε ∈ ]0, 1[ and ℓ0 ∝ log(N), then with high probability:2

(1−ε) ∥fi,l − fj,l∥2⩽∥f̃i,l−f̃j,l∥2 ⩽ (1+ε) ∥fi,l − fj,l∥2 ,
(7)

for all i and j in {1 · · ·N}. In practice, we choose ℓ0 =
⌊100 log(N)⌋ which yields dimensions for f̃i,l much lower
than typical values of D. We remark that this choice of
projection is independent of all fi,l and thus can be defined
and fixed before any feature extraction.

B. Implementation details
This section focuses on implementation details used to

produce the results in the main text of our paper. Our im-
plementation builds upon the WILDS framework3 released
with the paper of Koh et al. [16].

B.1. Construction of COCO-on-Places-224

We generated the dataset using the code4 of Ahmed et
al. [2] but, as explained in the main paper, we modified it
to produce images of size 224 × 224 instead of 64 × 64.
The reader can refer to the appendix of [2] for more details
regarding the generation of the COCO-on-Places dataset.

B.2. Details about robust optimization

We trained all models on one NVIDIA® V100 Tensor
Core with 16GB of memory, using PyTorch 1.10 and CUDA
10.2.

We used the implementations of IRM [3], Importance
Weighting and GroupDRO [24] available in WILDS [16],
our own implementations of JTT [21] and of GEORGE [27]

2We let the reader refer to Theorem 1.1 in [1] for the exact expression
of this probability as a function of ε, N and ℓ0.

3https://github.com/p-lambda/wilds
4https : / / github . com / Faruk - Ahmed / predictive _

group_invariance

(while making sure that we could reproduce the original
performances on Waterbirds and CelebA), and the official
implementation5 of EIIL [6]. Concerning EIIL, we recall
that we were not able to make this method scale to large
datasets such as CelebA.

For all methods, we used a ResNet-50 [12] architecture
trained using stochastic gradient descent with momentum
(SGD-M) and L2 regularization, but without any learning
rate scheduler. We used a momentum of 0.9 and a batch
size of 128 for all datasets and all methods. The learning
rate η and L2 regularization parameters λ are set as detailed
below.

JTT, GEORGE, EIIL, GRAMSTYLE all use Group-
DRO [24] as robust optimization step. On Waterbirds and
CelebA, we did not redo any grid search and used the hy-
perparameters found in [24]. These hyperparameters were
optimized using a small validation set annotated with true
group labels. To produce the results on COCO-on-Places-
224, we performed our own grid search using the anno-
tated validation set. We considered values of η and λ close
to those used in [24]: λ ∈ {10−4, 10−2, 10−1, 1} and
η ∈ {10−5, 5 · 10−5, 10−4}. The best hyperparameters for
GroupDRO are summarized in Table 3.

To ensure fair comparisons, we also performed the same
grid search over η and λ for ERM, IRM and Importance
Weighting. The best hyperparameters for ERM and IRM
are summarized for each dataset in Tables 4 and 5, respec-
tively. Note that they correspond to those reported in [24]
for Waterbirds and CelebA.

Table 3. SGD-M hyperparameters for GroupDRO training.

SGD-M hyperparam. Waterbirds CelebA COCO-on-P

Learning rate η 10−5 10−5 5 · 10−5

L2 regularization λ 1.0 0.1 10−2

Table 4. SGD-M hyperparameters for ERM training.

SGD-M hyperparam. Waterbirds CelebA COCO-on-P

Learning rate η 10−4 10−4 10−4

L2 regularization λ 10−3 10−4 10−4

Table 5. SGD-M hyperparameters for IRM training.

SGD-M hyperparam. Waterbirds CelebA COCO-on-P

Learning rate η 10−4 10−5 5 · 10−5

L2 regularization λ 10−3 0.1 0.1

5https://github.com/ecreager/eiil
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Table 6. Grid search for GRAMSTYLE-cv’s hyperparame-
ters on validation sets of Waterbirds, CelebA and COCO-on-
Places-224 with pseudo-group labels. We report the worst-group
(‘w-g’) and average (‘avg’) accuracies for Waterbirds and CelebA
datasets, and the systematically-shifted (‘sys’) and in-distribution
(‘ind’) accuracies for COCO-on-Places dataset.

Hyperparam. Waterbirds CelebA COCO-on-P
λ η w-g avg w-g avg sys ind

0.01 1 · 10−5 74.6 82.4 86.0 93.2 62.8 92.3
0.01 5 · 10−5 69.2 79.9 53.5 94.6 70.7 76.5
0.01 1 · 10−4 70.0 80.6 - - 78.5 82.7
0.1 1 · 10−5 75.4 82.6 85.6 93.7 78.7 83.3
0.1 5 · 10−5 73.8 82.4 85.0 89.1 70.4 76.4
0.1 1 · 10−4 76.9 85.8 - - 76.2 81.2
1 1 · 10−5 80.8 86.4 - - 65.5 72.6
1 5 · 10−5 0.0 23.1 - - 0.1 11.1
1 1 · 10−4 0.0 23.1 - - 0.2 11.1

B.3. Group discovery details

For GRAMSTYLE, we follow the standard practice of
neural style transfer [9] and use the VGG-19 [26] archi-
tecture for the identification model. This model is trained
during 1 epoch on the training dataset with ERM using a
batch size of 128 and SGD-M. In the experiments of Sec-
tion 4.2 in the main paper, we set the number of clusters to
2, and use the layer conv5 1 to extract Gram Matrices.

For EIIL and GEORGE, the identification model is a
ResNet-50 [12] as used in the original methods. We train
the model for 1 epoch with ERM using SGD-M, as for
GRAMSTYLE. Note that the activation at the output of the
last layer is a sigmoid in EIIL [6] while it is a softmax in
GEORGE [27]. As for GRAMSTYLE, the best results were
obtained when using 2 clusters for EIIL and GEORGE. We
refer the reader to [6] and [27] for other implementation de-
tails specific to EIIL and GEORGE, respectively.

Figure 4. Impact of the layer choice to extract style on CelebA.
We show the matching accuracy between the ground-truth envi-
ronments on the validation set of CelebA and the discovered ones
with GRAMSTYLE when using different VGG-19 layers. The
result denoted allconvX 1 is obtained when using all the layers
conv1 1, conv2 1, conv3 1, conv4 1, conv5 1 in our method.

B.4. Cross validation on pseudo-group annotations

We report in Table 6 the results of our grid search on the
validation set of each dataset using the pseudo-annotations
discovered with our method, i.e., using our discovered en-
vironments instead of the ground-truth ones. Hence, the av-
erage and worst-group accuracies in Table 6 are computed
using the discovered pseudo-groups. The hyperparameters
used in GRAMSTYLE-cv correspond to those that yield the
best worst-group accuracy in this table.

C. Clustering analysis on CelebA

We present, in Figure 4, the matching accuracy between
the ground-truth environments and the environments dis-
covered with our method on the validation set of CelebA
for different layers of the VGG-19. As on Waterbirds, we
notice that the best result is obtained when using the layer
conv5 1.
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