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Abstract
Learning a domain-invariant representation has become

one of the most popular approaches for domain adapta-
tion/generalization. In this paper, we show that the invariant
representation may not be sufficient to guarantee good gen-
eralization, where labeling function shift should be consid-
ered. Inspired by this, we first derive a new generalization
upper bound on the empirical risk by explicitly considering
the labeling function shift. We then propose Domain-specific
Risk Minimization (DRM) to tackle such shift. DRM can
model the distribution shifts of different domains separately
and select the most appropriate one for the target domain.
Extensive experiments on four popular domain generaliza-
tion datasets, namely, CMNIST, PACS, VLCS, and Domain-
Net, demonstrate the effectiveness of DRM for domain gen-
eralization with the following advantages: 1) it significantly
outperforms competitive baselines; 2) it enables either com-
parable or superior performance on all training domains
comparing to vanilla empirical risk minimization (ERM); 3)
it remains very simple and efficient during training, and 4) it
is complementary to invariant learning approaches.

1. Introduction
Domain generalization (DG) [41] aims to learn a gener-

alized model that performs well for unseen domains. Most
deep learning-based DG methods seek to learn an invariant
representation [4, 21, 26, 31], where the feature distributions
among all training domains are the same. However, without
accessing the data on the target domain, feature alignment
can be performed only among source domains, which in-
evitably raises a question: is the representation that is invari-
ant to the source domain shift really good enough for unseen
domain generalization?

In an attempt to answer this question, Zhao et al. [50] con-
siders the conditional shift in domain adaptation and shows
that only learning invariant representation is insufficient. A
surge of methods are then proposed to tackle this problem.
However, the target domain is unseen for DG, i.e., its label-
ing function is totally not accessible, which makes it more
challenging to consider labeling function shift. Therefore,

most DG methods [2, 9, 30] ignore such shift.
In this paper, we first show through a counterexample

that the ignorance of labeling function shift will lead to
significantly large errors on all domains even if the domain-
invariant representations are well learned. Then, we propose
a new generalization error bound to tackle labeling func-
tion shifts. The bound is proven tighter than that in [50].
Specifically, an intuitive explanation of the new generaliza-
tion bound is: since we cannot guarantee that all labeling
functions are the same, we would rather model all labeling
functions and choose the most appropriate one for a good
generalization for inference.

Motivated by the proposed error bound, we propose a
new DG approach called Domain-Specific Risk Minimiza-
tion (DRM) to reduce the negative impact of domain la-
beling function shift, which can be easily incorporated into
most deep representation learning algorithms. DRM intro-
duces a shared encoder for all source domains with a group
of domain-specific classifiers during training. Specifically,
each domain-specific classifier is responsible for the labeling
function on a specific source domain. During testing, we
further propose three test-time model selection strategies for
classifier selection. Our contributions are three-fold:

A new perspective. We show the insufficiency of invari-
ant representations and provide a new generalization bound
to explicitly consider the conditional shift for DG.

A new approach. We propose DRM to model all labeling
functions in a domain-specific manner. The proposed model
structure and test-time selection strategy are orthogonal to
most of existing methods.

Extensive experiments. Extensive experiments on popu-
lar DG benchmarks show that DRM (1) achieves competitive
generalization performance; (2) is orthogonal to other DG
methods; (3) reserves strong recognition capability on source
domains, and (4) is parameter-efficient.

2. Domain Generalization Bound
Let X ,Y,Z denote the input, output, and feature space,

respectively. Let X,Y, Z denote the random variables tak-
ing values from X ,Y,Z , respectively. Each domain cor-
responds to a joint distribution Pi(X,Y ) with a labeling



function fi : X → [0, 1]1. In the DG setting, we have
access to a labeled training dataset that consists of sev-
eral different but related training distributions (domains):
D = ∪Ki=1Di, where K is the number of domains. In
this paper, we focus on a deterministic setting where the
output Y = fi(X) is given by a deterministic labeling
function, fi, which varies from domain to domain. Let
g : X → Z denote the encoder/feature transformation and
h : Z → {0, 1} denote the classifier/hypothesis. The er-
ror incurred by h ◦ g under domain Di can be defined as
ϵi(h ◦ g) = EX∼Di

[|h ◦ g(X)− fi(X)|]. Given fi and h as
binary classification functions, we have

ϵi(h ◦ g) = ϵi(h ◦ g, fi) = EX∼Di
[|h ◦ g(X)− fi(X)|]

= PrX∼Di
(h ◦ g(X) ̸= fi(X)).

(1)
During training, h◦g is trained using all image-label pairs

from D. During testing, we perform a retrieval task on the
unseen target domainDT without additional model updating
and we aim to minimize the error in DT : minh◦g ϵT (h ◦ g).

2.1. A Failure Case of Invariant Representation
Objective Eq.(1) encodes the goal of learning a model

with domain invariant representations [13, 21, 22]. Specif-
ically, a parametric feature transformation g : X → Z is
learned such that the induced source distributions on Z are
close to each other. Besides, a hypothesis h over the feature
space Z is found to achieve small empirical errors on source
domains. These studies get intuition from the error bound
in [5, 46] and for completeness, we show the bound in Ap-
pendix C.2. However, we show a counterexample with two
source domains and two target domains in Figure 1, where
even the optimal invariant representation in Figure 1(b) leads
to large errors on both source and target domains (Refer to
Appendix A for the details).

1Most theories and examples in this paper considers binary classifi-
cation for easy understanding and can be easily extended to multi-class
classification.
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Figure 1. A failure case of invariant representations for domain
generalization. (a) Four domains in different colors: orange (µo =
[−3.0, 3.0]), green (µg = [3.0, 3.0]), red (µr = [−3.0,−3.0]) and
blue (µb = [3.0,−3.0]). (b) Invariant representations learnt from
domain Dr and Db by feature transformation g(X) = Ix1<0 ·(x1+
3) + Ix1>0 · (x1 − 3). The grey color indicates the transformed
target domains. (c) The classification boundary learnt by DRM.

2.2. A Bound by Labeling Function Shift

Motivated by the example, we next provide a tighter upper
bound for DG that considers labeling function shifts.

Proposition 1. Let {Di, fi}Ki=1 andDT , fT be the empiri-
cal distributions and corresponding labeling function. For
any hypothesis h ∈ H and transformation g, given mixed
weights {αi}Ki=1;

∑K
i=1 αi = 1, αi ≥ 0, we have:

ϵT (h ◦ g) ≤
K∑
i=1

(EX∼Di

[
αi

PT (X)

Pi(X)
|h ◦ g − fi|

]
+

αiEDT [|fi − fT |]).
(2)

See Appendix C.3 for the proof and interpretations.

Although labeling function shift has been considered in
domain adaptation error bound [3], in Appendix C.4, we
show that the proposed bound is tighter. Besides, the pro-
posed bound can supply a novel perspective for aligning
labeling function shifts.

Remark. Eq. (2) provides a new intuition on the design of
DG models. Specifically, the density ratio PT (x)/Pi(x) has
a strong connection with reweighting methods and provides
a theoretical explanation for why reweighting data samples
works well on DG (See Appendix C.5 for details). The label-
ing functions fi, fT are constant and cannot be optimized,
and we focus on mixed weights αi and h◦g. The first term
will be minimized when h ◦ g attains low errors in source
domains. The second term cannot be optimized directly,
however, we can manipulate α to affect this term as follows.
Given fT , if we can find the source domain Di∗ with a la-
beling function fi∗ that minimizes ET [|fi∗ − fT |], then we
have that αi = 1, iff i = i∗, otherwise 0 makes this term
the minimum. As a whole algorithm, these two procedures
correspond to simultaneously finding the domain Di∗ whose
labeling function is close to fT , setting αi∗ = 1 and learning
h◦g onDi∗ to minimize the source error. Namely, as long as
we can accurately estimate ET [|fi − fT |], only one domain
is required for training to minimize the error in the target
domain. However, calculating ET [|fi∗ − fT |] is intractable
especially when DT is unseen during training. To tackle
the challenge and follow the intuition brought by Eq.(2), we
propose a new Domain-Specific Risk Minimization (DRM)
method for domain generalization.

3. Domain-Specific Risk Minimization
The main pipeline of the proposed Domain-Specific Risk

Minimization (DRM) is shown in Figure 2.

3.1. Domain-specific labeling function
One of our main contributions is the modeling of domain-

specific labeling function. Specifically, given K source
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Figure 2. An illustration of the training and testing pipelines
using DRM. (a) during training, it jointly optimizes an encoder
shared by all domains and the specific classifiers for each individual
domain. Lerm indicates the cross-entropy loss function. (b) the
new image is first classified by all classifiers and a test-time model
selection strategy is applied to generate the final result.

domains, DRM utilizes a shared encoder g and a group
of classifiers {hi}Ki=1 for all domains, respectively. The
encoder is trained by all data samples while each classifier
hi is trained by using only images from the domain Di. If
we go back to Eq.(2), with domain-specific classifiers, we
then have the bound

K∑
i=1

αi

(
Ex∼Di

[
PT (x)

Pi(x)
|hi ◦ g − fi|

]
+ EDT [|fi − fT |]

)
.

(3)
Therefore, Eq.(3) shows that it is rather possible to achieve
low errors on source domains by using the domain-specific
classifiers than just one hypothesis h. It is also possible
but not efficient to use specific hi ◦ gi for each domain.
However, we observe that, on the Colored MNIST dataset,
it achieves the generalization accuracy 64.8% when using
specific hi ◦ gi, while it is 70.1% for using specific hi. A
possible reason is that a shared encoder g can be seen as
an implicit regularization, which prevents the model from
overfitting specific domains.

3.2. Test-time model selection
We do not aim at a lower source error but also want to

know “how to determine mixed weights α such that low tar-
get domain error can be achieved?”. As mentioned above,
the second term αiEDT [|fi − fT |] cannot be optimized di-
rectly, however, we can manipulate αi to affect this term:
for every test sample x ∈ DT , if we can estimate {Hi =
|fi(x) − fT (x)|}Ki=1 and choose i∗ = argmin{Hi}Ki=1.
Then αi = 1, iff i = i∗, otherwise 0 makes this term the
minimum and the final prediction result will be fi∗ ◦ g(x).
The challenge here is estimating {Hi}Ki=1. To this end, we
propose three different techniques to estimate {Hi}K given
an assumption “the learnt hi ◦ g can well approximate fi”.

Similarity Measurement (SM). We first reformulate
αiEDT [|fi − fT |] as follows:

αiEDT [|fi − fT |] = αiEDT [|fi − EDi [fi] + EDi [fi]− fT |]
≤ αi (EDT [|fi − EDi [fi]|] + EDT [|EDi [fi]− fT |]) ,

(4)
where fT is intractable and we then focus on

EDT [|fi − EDi [fi]|], which intuitively measures the
prediction difference of the given test data x ∈ DT and
the average prediction result in domain Di. However, take
average of the prediction labels is meaningless2 and we
use EDT [g − EDi

[g]|] to approximate this term, where
we calculate the representation difference between the
test sample and average representations of domain Di.
Estimation Hi here is 1 minus the representation similarity
between g(x);x ∈ T and domain EDi

[g]. The similarity
can be calculated by any distance metric such as lp-Norm,
cosine similarity, f−divergence, MMD/A distance, and we
use cosine similarity (CSM) and l2-Norm (L2SM) in our
experiments for example.

Prediction Entropy Measurement (PEM). Given the
following assumption: “the more confident prediction hi ◦ g
makes on DT , the more similar fi and fT will be”. We then
have, during testing, the K individual classification logits
as {ȳk}Kk=1, where ȳk = [yk1 , ..., y

k
c ], and c is the number of

classes. Then, the prediction entropy of ȳk can be calculated
as Hk = −

∑c
i=1

yk
i∑c

j=1 yk
j

log
yk
i∑c

j=1 yk
j

, where the entropy
is used as our expected estimation. In our experiments,
we find that the prediction entropy consistent with domain
similarities, which is similar to SM.

Neural Network Measurement (NNM). To fully uti-
lize the modeling capability of neural network, we finally
propose to estimate αiEDT [|fi − fT |] by NN. Specifically,
during training, a domain discriminator is trained to classify
which domain is each data sample from. During test, for
x ∈ DT , the classification vector of the discriminator will
be {di}Ki=1, and {Hi = −di}Ki=1 is used as the estimation.

Model Ensembling. A one-hot mixed weight is too de-
terministic and cannot fully utilize all learned classifiers.
Softing mixed weights can further boost generalization per-
formance, i.e. for ERM, we can generate the final prediction

as
∑K

k=1 ȳk
H−γ

k∑K
i=1 H−γ

i

, where H−γ
k indicates the contribu-

tion of each classifier. We use −γ not γ because the smaller
the predicted labeling function difference between fi and
fT , the larger the contribution of fi should be. Specifi-
cally, for γ = 0, we then have a uniform combination, i.e.
αi = 1/K,∀i ∈ [1, 2, ...,K]; for γ → ∞, we then have a
one-hot weight vector with αi = 1 iff i = i∗ otherwise 0.

Remark. By modeling domain-specific labeling func-
tions, DRM can further reduce source errors (i.e. the first
term in our upper bound); For the second term, the test-time
model selection strategies strategy allows us to select appro-
priate mixed weights and avoid directly calculating labeling
function difference. In Appendix B, we show that DRM per-
forms well on the counterexample, where invariant learning
fails. Refer to Appendix Algorithm 1,2,3 for the detail of the

2if all source domain has two data samples with different labels, e.g. two
different one-hot labels [0, 1], [1, 0]. Then the average prediction result of
all source domains will be [0.5, 0.5] and have no difference.
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Figure 3. The entropy of different predictions. (a) Training
domain {0, 1} and testing domain {2}. (b) The average of train-
ing/testing domains {0, 1}/{2}, {0, 2}/{1}, and {1, 2}/{0}. (c)
Domain-classifier correlation matrix, the value vij is the entropy
of predictions incurred by predicting samples in domain i with
classifier j. Dom.i indicates the classifier for the domain d = i.

training and test pipelines of the proposed three strategies.
In the experimental section, we compare the proposed three
strategies and PEM generally performs the best, thus we
later use PEM as the default choice.
3.3. Case Studies

In this subsection, we perform case study analysis on the
Colored MNIST dataset [4], where spurious correlations are
manually created and can thus be a good indicator, to verify
the following remarks:

• DRM has better generalizability than invariant learning-
based methods.

• DRM retains high accuracies on source domains and is
orthogonal to invariant learning-based methods.

• PEM implicitly reduces prediction entropy and the entropy-
based strategy performs well on finding a proper labeling
function for inference.

As shown in Table 1, ERM achieves high accuracies on
training domains but below-chance accuracy on the test do-
main due to relying on the spurious correlations. IRM forms
a tradeoff between training and testing accuracy [4]. An
ERM model trained on only gray images, i.e. ERM (gray),
is perfectly invariant by construction, and attains a better
tradeoff than IRM. The upper bound performance of invari-
ant representations (OIM) is a hypothetical model that not
only knows all spurious correlations but also has no mod-
eling capability limit. For averaged generalization perfor-
mance, DRM, without any invariance regularization, outper-
forms IRM by a large margin (more than 2.4%). Besides,
the training accuracy attained by DRM is even higher than
ERM and significantly higher than IRM and OIM. Note that
DRM is complementary with invariant learning-based meth-
ods, where incorporating CORAL [37] can further boost
both training and testing performances. Though the Col-
ored MNIST dataset is a good indicator to show the model
capacity for avoiding spurious correlation, these spurious
correlations therein are unrealistic and utopian. Therefore,

+90% (d = 0) +80% (d = 1) -90% (d = 2) Avg
Method train test train test train test train test

ERM 86.1±3.9 71.8±0.4 83.6±0.5 72.9±0.1 87.5±3.4 28.7±0.5 85.7 57.8
IRM 78.2±9.5 72.0±0.1 70.6±9.1 72.5±0.3 85.3±4.7 58.5±3.3 78 67.7
DRM 81.8±9.8 86.7±2.4 90.2±0.2 80.6±0.2 88.0±4.5 43.1±7.5 86.7 70.1

DRM+CORAL 83.4±8.6 85.3±2.3 91.6±0.7 80.7±0.2 89.4±4.9 47.2±3.6 88.1 71.1
RG 50 50 50 50 50 50 50 50

OIM 75 75 75 75 75 75 75 75
ERM (gray) 84.8±2.7 73.9±0.3 84.3±1.4 73.7±0.4 83.4±2.3 73.8±0.7 84.2 73.8

Table 1. Accuracies (%) of different methods on training/testing
domains for the Colored MNIST synthetic task. OIM (optimal
invariant model) and RG (random guess) are hypothetical.

when testing on large DG benchmarks (e.g. PACS, VLCS,
DomainNet), ERM outperforms IRM. Different from them,
DRM not only performs well on the semi-synthetic dataset
but also attains SOTA performance on large benchmarks.

The prediction entropy is often related to the fact that
more confident predictions tend to be correct [40]. In Fig-
ure 3a, we find that the entropy in target domain (d = 2)
tends to be greater than the entropy in source domains,
where the source domain with stronger spurious correla-
tions (d = 1) also has larger entropy than easier one (d = 0).
Fortunately, with the entropy minimization strategy, we can
find the most confident classifier for a given data sample,
and DRM can reduce the entropy of predictions (Figure 3b).
To further analyze the entropy minimization strategy, we vi-
sualize the domain-classifier correlation matrix in Figure 3c,
where the entropy between the domain and its corresponding
classifier is minimal, verifying the efficiency of the entropy
minimization strategy. Please refer to Appendix F.4 for more
analysis on the domain-classifier correlation matrix.

We also conduct experiments on popular DG datasets, e.g.
PACS, VLCS, and DomainNet, analyze the model complex-
ity, training convergence, and compare the proposed three
test-time selection strategies with ensembling learning base-
lines ( Refer to Appendix F for the details). For space limit,
we discuss related works of DG ethods, ensembling learning
methods, and labeling function shift in Appendix E.

4. Conclusion
In this paper, we study the important problem of label-

ing function shifts for domain generalization theoretically
and empirically. We first construct an example to show
that learning an invariant representation without consider-
ing the labeling function shift is not sufficient for a good
generalization. We then prove a novel upper bound for the
target error, which motivates us to propose DRM to elimi-
nate the negative effects brought by labeling function shifts.
DRM achieves not only a superior generalization perfor-
mance but also maintain low source errors simultaneously.
We hope that our results can shed new light on the model
design for domain generalization problems. One possible
direction is to estimate αiPT (x)/Pi(x) and then reweight
data samples, which will be the subject of our future study.
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[4] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

[5] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando
Pereira. Analysis of representations for domain adaptation.
In NIPS, 2006.

[6] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski.
Robust optimization. Princeton university press, 2009.
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