
Generalizable Person Re-identification Without Demographics
– Appendix –

A. Supplementary disadvantages of DG ReID setting
Privacy Risks. 1) The specialized domain information of mostly common used ReID datasets, e.g. Market1501 and CUHK

is described by the author in the article, such as the campus of Tsinghua University and the Chinese University of Hong Kong.
In practice, different from these public datasets for research purposes, ReID domain/cameras information acquisition is often
completed automatically, based on some inherent physical properties of cameras (such as network cameras MAC address).
With the increasing development of the Internet of Things, the utilization of cameras’ physical properties will definitely
increase the leakage risk of location information, as each device will be online in the future. 2) Even if the location information
is eliminated, the relationships between different people are still exposed by the annotated domain information. If two-person
IDs are marked with the same camera, their social relationships can be simply measured by counting their occurrence frequency
in the same camera. So the private social relationships among persons may be leaked, which may be more sensitive than
location information. In summary, removing these domain/camera information in data collection is definitely a safer and
efficient usage mode of the person images. Manually collected domain labels may be noisy or suboptimal. Previous studies
in this area have defined each domain or each camera simply as a dataset and focused on developing learning techniques.
However, how best to partition domains that can benefit the learning process most is still unclear [48]. Defining each domain
or each camera as a dataset is too simple and sometimes unreasonable. As illustrated in Figure 4, images in each column is
from the same datasets and different camera, however, we can see that some images in different datasets and also different
camera are very similar (images in each row). In contrast, some images in one dataset are very dissimilar (images in each
column). Namely, the artificially defined domain ID and camera ID are not optimal for downstream learning, and finding more
rational domain partitions for DGWD-ReIDtasks is an open and important problem.

B. Related Works
DG-ReID. Generalizable methods are recently proposed to learn invariant representations that can generalize to unseen

domains [7,47,59–61]. Existing methods mainly utilize domain divergence minimization strategies or a meta-learning pipeline.
In view of the current research trend (Table 4), most methods rely on demographics to learn invariant features. Though existing
strong baseline [28], normalization [23], and augmentation methods [56] require no demographics, they are plug-and-play
modules and thus orthogonal to the proposed Unit-DRO. Different from existing studies, DGWD-ReID adds a strict restriction
on demographics and has ambitious targets that “can we learn invariant features even without demographics? can we
partition domains better?”.

Fairness without Demographics. Methods in Fairness [13] aim to develop a model that performs well for worst-case
group assignments according to some fairness criteria for addressing the underperformance in minority subgroups. Though
there are several works considering fariness without demographics [8, 31], they mostly evaluate their algorithms in datasets
with predefined distribution shifts. Note that DGWD-ReID is more challenging than the category-level recognition problem
considered in the existing fariness w or w/o demographics study. In DGWD-ReID, the target identities are different from
source ones and we need to tackle both domain gap and disjoint label space problems simultaneously. Domain generalization.
Domain/Out-of-distribution generalization [36, 59] aims to learn a model that can extrapolate well in unseen environments.
Representative methods like Invariant Risk Minimization (IRM) [2] and its variant [1] are recently proposed to tackle this
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Figure 4. Samples on ReID datasets.
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Method Source Domain Camera

DIR-ReID [61] Arxiv 21 ✓ ✓
MetaBIN [7] CVPR 21 ✓ ✓
M3L [62] CVPR 21 ✓
DMG-Net [3] CVPR 21 ✓ ✓
RaMoE [9] CVPR 21 ✓
CBN [67] ECCV 20 ✓
CAIL [33] ECCV 20 ✓ ✓
QAConv [27] ECCV 20 Backbone
SNR [23] CVPR 20 Normalization

Table 4. The current research trend of DG-ReID.

challenge. IRM center on the objective of extracting data representations that lead to invariant prediction across environments
under a multi-environment setting. The main difference here is that we propose to learn invariant representations without
demographics.

Unsupervised-domain adaptation Person ReID. Unsupervised Domain Adaptation (UDA) technologies have great
progress [41] and have been widely adopted for cross-domain person ReID. The UDA-based ReID methods usually attempt to
transfer the knowledge learned from the labeled source domains to target domains, depending on target-domain images [21,33],
features [53] or metrics [40]. Another group of UDA-based methods [15, 58] propose to explore hard or soft pseudo labels
in unlabeled target domain using its data distribution geometry. Though UDA-based methods improve the performance of
cross-domain ReID to a certain extent, most of them require a large amount of unlabeled target data for model retraining.

Distributionally Robust optimization. Distributionally Robust optimization [5] solve robust versions of ERM, which
replace the expected risk under the training data distribution with the worst expected risk over a pre-defined uncertainty
set Q (refer to [42] for a review). Recent studies consititute Q analytically, such as using moment constraint [10, 37], f -
divergence [20, 35], Wasserstein/MMD ball [46, 49] or coarse-grained mixture models [12, 39]. We reformulate KL-constraint
DRO to an important sampling problem (Unit-DRO) and propose an efficient implementation, which scales to large dataset
and overparameterized neural network.

C. Experiments
C.1. Experimental Setup

Datasets. Following [22, 47, 61], we evaluate the Unit-DRO with multiple data sources (MS), where source domains
cover five large-scale ReID datasets, including CUHK02 [25], CUHK03 [26], Market1501 [63], DukeMTMC-ReID [64], and
CUHK-SYSU PersonSearch [55]. The unseen test domains are VIPeR [16], PRID [18], QMUL GRID [30], and i-LIDS [54].
Details of the training datasets are summarized in Table 7 and the test datasets are summarized in Table 8. The average rank-k
(R-k) accuracy and mean Average Precision (mAP) over 10 random splits are reported based on the evaluation protocol

Baselines We compare our model with 1) DG-ReID methods, including AugMining [50], DIMN [47], DualNorm [22],
SNR [23], DDAN [6], DIR-ReID [61], and MetaBIN [7]; and 2) CD-ReID methods, including CrossGrad [45], QAConv [27],
L2A-OT [66], OSNet-AIN [65], SNR [23], DIR-ReID [61], and MetaBIN [7].

C.2. Results

DG-ReID Protocols. We summarize the detailed difference of different protocols in Tab. 5. As shown in Tab. 11, 9, 10 ,
Unit-DRO outperforms other methods with a clear margin in both average mAP and Rank-1 accuracy, which demonstrate the
robustness of the proposed Unit-DRO across different evaluation protocols.

Protocol Source Target Backbone Augmentation

(1) M/D D/M+V+P+G+I ResNet-50 Color-Jittering
(2) MS+D+M (train) C3 ResNet-50 None
(3) M+D+MT C3 ResNet-50 Color-Jittering
(4) M+D+C3+MT V+P+G+I ResNet-50 Color-Jittering

Table 5. Summary of different DG-ReID protocols. (M:market1501, C2: Cuhk02, C3: Cuhk03, D: DukeMTMC, MT: MSMT17, CS:
CUHK-SYSU, V: ViPeR, P: PRID, G: GRID, I: i-LIDS)

9



Domain PACS VLCS
A C P S Avg C L S V Avg

IRM 85.7 ± 1.0 79.3 ± 1.1 97.6 ± 0.4 75.9 ± 1.0 84.6 97.6 ± 0.5 64.7 ± 1.1 69.7 ± 0.5 76.6 ± 0.7 77.2
Group-DRO 88.2 ± 0.7 82.4 ± 0.8 97.7 ± 0.2 80.6 ± 0.9 87.2 97.8 ± 0.0 66.4 ± 0.5 68.7 ± 1.2 76.8 ± 1.0 77.4

MIXUP 87.4 ± 1.0 80.7 ± 1.0 97.9 ± 0.2 79.7 ± 1.0 86.4 98.3 ± 0.3 66.7 ± 0.5 73.3 ± 1.1 76.3 ± 0.8 78.7
DANN 86.4 ± 1.4 80.6 ± 1.0 97.7 ± 0.2 77.1 ± 1.3 85.5 95.3 ± 1.8 61.3 ± 1.8 74.3 ± 1.0 79.7 ± 0.9 77.7

Unit-DRO 88.3 ± 0.1 84.8 ± 0.1 96.4 ± 0.1 82.1 ± 0.1 87.9 98.1 ± 0.1 68.0 ± 0.0 71.3 ± 0.1 78.8 ± 0.0 79.1

Table 6. Results for general DG tasks.

General Domain Generalization. Apart from person ReID, we also compare Unit-DRO with other general domain
generalization methods, including IRM [2], Group-DRO [43], DANN [14], and Mixup [56]. For fair comparison, we use
test-domain validation, which is one of the most important methods in [17]. Specifically, this strategy is an oracle selection
one since we choose the model maximizing the accuracy on a validation set that follows the distribution of the test domain. As
shown in Table. 6, Unit-DRO consistently outperforms all baseline methods for general domain generalization tasks with a
clear margin without using demographics.
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Figure 5. Visualizing the distribution of the sample weight at 1k, 5k, 10k, 20k steps, respectively (from left to right).

C.3. Analysis

Sample Weights. Considering that the proposed Unit-DRO will upweight and downweight different samples, we thus
visualize the distribution of sample weight to better understand the influences of different components. Specifically, during
training, we save the mean and variance of sample weights for every 1k iterations/steps. We assume these weights follow the
Gaussian distribution N (µ, δ) and plot diagrams based on the mean µ and variance δ. The x-coordinate of these diagrams
is just the value between [µ− 3 ∗ δ, µ+ 3 ∗ δ], not the real values of weights. Based on the loss values of each sample, we
calculate the weights under the following two settings: 1) sample weights without the weight queue. In this case, these
weights are normalized in their batches, so the mean of all distributions here is 1. As shown in Figure 2, we have already
discussed this setting in the former sections; 2) sample weights with different length of weight queue |M|. In Figure 5,
we show the distribution of sample weight at 1k, 5k, 10k, 20k training steps, which indicates how the weight distribution
changes during training. Intuitively, we may need a large |M| to better estimate EP [e

ℓ(x,y;θ)/τ∗
]. However, as |M| becomes

larger, the estimation will become inaccurate. For example, we consider an extreme case: |M| = T − 1 and then the queue
absolutely contains all training data. Therefore, it is catastrophic to estimate EP [e

ℓ(x,y;θ)/τ∗
] in step T by such a queue. The

large queue contains too much old weights which is unsuitable for the current model. Figure 5 depicts the phenomenon, where
the distribution with a larger |M| always has smaller µ. For more visualization results and discussions about the distribution
diagrams of the multi-step τ∗, please see Appendix C.3.

Distribution diagrams of step τ∗ Compared to a constant τ∗, weights with step τ∗ always have low δ and are more stable.
Additional t-SNE Visualization Results Figure 7 shows the t-SNE results on four unseen datasets. Figure 8 shows the

t-SNE results on five training datasets and Figure 10 shows the t-SNE results on the Market-Duke benchmark. All of these
results demonstrate a common pattern, DualNorm [22] retain large domain divergences and its embedding vector is far from
“domain invariant”. MetaBIN [7] utilizes a complex framework and expensive demographics, which is able to reduce domain
divergences. Unit-DRO achieves a comparable or even better result than MetaBIN [7] in a simpler and cheaper paradigm.
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Dataset Images IDs
CUHK02 1,816 7,264
CUHK03 1,467 14,097

DukeMTMC-Re-Id 1,812 36,411
Market-1501 1,501 29,419

CUHK-SYSU 11,934 34,547

Table 7. Training Datasets Statistics. All the im-
ages in these datasets, regardless of their original
train/test splits, are used for model training.

Dataset
Probe Gallery

Pr. IDs Pr. Imgs Ga. IDs Ga. imgs
PRID 100 100 649 649
GRID 125 125 1025 1,025
VIPeR 316 316 316 316
i-LIDS 60 60 60 60

Table 8. Testing Datasets statistics.

Avg Target:Market1501 Target:Duke Target:PRID Target:GRID Target:VIPeR Target:iLIDs
Source Methods mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

A-IN 45.2 44.1 75.3 89.8 24.1 42.7 33.9 21 35.6 27.2 38.1 29.1 64.2 55
IBN 39.9 39.1 81.1 92.2 21.5 39.2 19.1 12 27.5 19.2 32.1 23.4 58.3 48.3

A-SN 42.2 40.9 83.2 93.9 20.1 38 35.4 25 29 22 32.2 23.4 53.4 43.3
IN 45.7 45.1 79.5 90.9 25.1 44.9 35 25 35.7 27.8 35.1 27.5 64 54.2

SNR 50.9 49.6 84.7 94.4 33.6 55.1 42.2 30 36.7 29 42.3 32.3 65.6 56.7

Market1501

Ours 54.7 53.2 83.5 92.2 33.8 55.5 56.7 44.5 40 31 44.7 35.3 69.3 60.7
A-IN 41.2 43.6 21.8 56 64.5 78.9 38.6 29 19.6 13.6 35.1 27.2 67.4 56.7
IBN 39.9 41.7 26.5 52.5 69.5 81.4 27.4 19 19.9 12 32.8 23.4 63.5 61.7

A-SN 42.3 45.5 24.6 55 73 85.9 41.4 32 18.8 12.8 31.3 24.1 64.8 63.3
IN 43.7 45.1 27.2 58.5 68.9 80.4 40.5 27 20.3 13.2 34.6 26.3 70.6 65

SNR 51.3 52.2 33.9 66.7 72.9 84.4 45.4 35 35.3 26 41.2 32.6 79.3 68.7

Duke-MTMC

Ours 55.6 56.2 36.4 69.2 72.8 81.7 63.2 53.23 39.9 30.4 44.5 34.8 76.7 68

Table 9. Comparisons against state-of-the-art DG methods for person ReID on evaluation protocol (i). Unit DRO outperforms SNR by a
large margin in average mAP and Rank-1 accuracy. Especially on the PRID dataset, Unit DRO achieves more than 10% points improvement
on both mAP and Rank-1 accuracy.

Protocol (ii) Protocol (iii)

Method mAP Rank-1 Rank-5 Rank-10 Method mAP Rank-1
RaMoE 35.5 36.6 54.3 64.6 M3L 29.9 30.7

Ours 43.8 43.6 65.3 74.5 Ours 30.9 31.1

Table 10. Comparisons against state-of-the-art DG methods for person ReID on evaluation protocol (ii) and (iii). Protocol (ii) and (iii) are
both multiple-to-one setting which used in RaMoE [9] and M3L [62] respectively. Unit DRO beats them in both these two settings.

Avg Target:PRID Target:GRID Target:VIPeR Target:iLIDs
Method mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

SNR 64.6 55.4 60.0 49.0 41.3 30.4 65.0 55.1 91.9 87.0
RaMoE 71.3 63.0 66.8 56.9 53.9 43.4 72.2 63.4 92.3 88.4

Ours 76.1 68.0 79.4 71.3 59.8 50.2 77.1 68.9 88.2 81.7

Table 11. Comparisons against state-of-the-art DG methods for person ReID on evaluation protocol (iv). Unit DRO outperforms RaMoE [9]
in protocols (iv) by a large margin.

Consider discriminative capability. Figure 9 visualizes the probe and gallery samples on four test datasets individually.
The utopian discrimination result is that every query-galley pair has the closest intra-identity distance and a relatively large
inter-identity distance. Figure 9d and Figure 9b shows that Unit-DRO performs well matching on the i-LIDS and the PRID
dataset. However, we observe an interesting phenomenon, termed “Inter-Identity Cluster”. Specifically, probes and galleries
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Figure 6. Distribution visualization of sample weights (|M| = 800 by default) of steps [1000, 50000, 100000, 150000] (from left to right).
The horizontal axis represents the weight, and the vertical axis represents the density. τ∗ = [τ1, τ2, τ3] means τ∗ = τ1 initially and decayed
to τ2 and τ3 at 40 and 70 epochs.

of different identities came together in some clusters. These clusters are always seen on the VIPeR and the GRID datasets
(Figure 9a and Figure 9b), which reveals why Unit-DRO performs much poorly on these two datasets.

(a) (b) (c)

Figure 7. The t-SNE visualization of embedding vectors on four unseen target datasets. Query and gallery samples are expressed in different
shapes. Best viewed in color.

(a) (b) (c)

Figure 8. The t-SNE visualization of embedding vectors on five training datasets. Best viewed in color.
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Inter-Identity Cluster

(a) VIPeR (b) PRID

Inter-Identity Cluster

(c) GRID (d) i-LIDS

Figure 9. The t-SNE visualization of embedding vectors on four test datasets individually. Best viewed in color.

(a) (b) (c)

Figure 10. The t-SNE visualization of embedding vectors on Market1501 [63] and DukeMTMC-ReID [64]. Model are trained on Market-
Duke benchmark. Best viewed in color.

Implementation of Domain divergence measurement In general, MMD distance [51] is defined by the idea of representing
distances between distributions as distances between mean embeddings of features. Following MMFA model [29], we use
the RBF characteristic kernel with bandwidth α2 = 1 : 5 : 10 to compute the MMD distance. A-distance [32] can be
approximated as dA(di, dj) = 2(1− 2σ), where σ is the error of a two-sample classifier distinguishing features of samples
from two distinct domains di, dj . Note that we have not only two domains. To measure the A-distance or MMD-distance on
four unseen datasets, we calculate the average mean distance of each domain pair, namely

A(U) =
1

6

4∑
i=1

4∑
j=i+1

A(di, dj). (10)

Additional domain divergence measurement results The MMD-distance between every dataset pair of all the datasets is
plotted in Figure 11a. The MMD-distance between every dataset pair of five training datasets is shown in Figure 11b and
that of four test datasets is shown in Figure 11c. For the training dataset, we find that the CUHK02 dataset remains large
divergences with almost all the other domains. Namely, the CUHK02 dataset is more likely to be an out-of-distribution dataset
and is more important to generalization capability. Hence, Unit-DRO assigns relatively higher weights for samples in the
CUHK02 dataset. In terms of test datasets, the GRID dataset maintains the largest MMD distance among these datasets. It
is also the reason why Unit-DRO performs badly on the GRID dataset. However, domain divergence is not the only factor
that affects generalization performance. Figure 11c shows that the PRID dataset has a larger domain divergence than VIPeR.
However, Unit-DRO performs better on the PRID dataset than on the VIPeR dataset.
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Figure 11. The heatmaps of MMD distance on training and test dataset pairs. (a, b): 0: CUHK02, 1: CUHK03, 2: Market1501, 3:
DukeMTMC, 4: CUHK-SYSU, 5: GRID, 6: VIPeR, 7: PRID, 8: i-LIDS. (c): 0: GRID, 1: VIPeR, 2: PRID, 3: i-LIDS.
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