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Abstract

Domain generalizable person re-identification (DG-ReID)
aims to learn a ready-to-use domain-agnostic model directly
for cross domain evaluation, while current methods mainly
explore the demographic information such as domain and/or
camera labels for domain-invariant representation learning.
However, the above-mentioned demographic information is
not always accessible in practice due to the privacy and
security issues. In this paper, we consider the problem of
person reid in a more general setting, i.e. domain general-
izable person re-id without demographics (DGWD-ReID).
To address the underlying uncertainty of domain distribu-
tion, we introduce distributionally robust optimization (DRO)
to learn robust person reid models without demographics.
However, directly applying the popular Kullback-Leibler di-
vergence constrained DRO (or KL-DRO) fails to generalize
well, since the convex condition may not hold for overparam-
eterized neural networks. Inspired by this, we reformulate
the popular KL-DRO, and then propose a simple yet efficient
approach, Unit-DRO, which minimizes the loss over a new
dataset with hard samples upweighted and other samples
downweighted. We perform extensive experiments on both
DG reid tasks, and the empirical results on several large-
scale benchmarks show that Unit-DRO achieves superior
performance without using demographics.

1. Introduction
Person re-identification (ReID) aims to find the corre-

spondences between person images from the same identity
across multiple camera views. Domain generalizable per-
son ReID (DG-ReID) models are trained on multiple large-
scale datasets and tested on unseen domains directly without
extra data collection/annotation and model updating on new
domains. Therefore, DG-ReID is receiving increasing atten-
tion from the community due to its great value in real-world
person retrieval applications.

However, current DG-ReID research usually comes at
a serious disadvantage: it requires the demographic infor-
mation (e.g. domain labels [7, 62], camera IDs [61], and
video timestamps [57]) as the extra supervision for model

training. Such demographics implicitly define the variations
in training data that the learned model should be invariant
or robust to. Unfortunately, the demographic information is
usually not available in practice due to the following reasons:
1) the collection of demographics inevitably leads to privacy
problems [52], e.g. the risks of exposing the geographical
location and/or the environment information; 2) the collec-
tion/annotation of domain labels is very expensive and eth-
ically fraught endeavours [35]; and 3) such coarse-grained
labels and the noise of manual annotation collected domain
labels may exacerbate the hidden stratification issue, which
hinders a variety of safety-critical applications [8, 24, 38]
(refer to Appendix A for more discussions). Therefore, we
consider a more general setting for ReID, i.e. DG Person
Re-identification Without Demographics (DGWD-ReID),
where the model is trained without demographics.

To address the underlying uncertainty of domain distribu-
tion without using demographics, distributionally robust op-
timization (DRO) is a promising paradigm [19]. Specifically,
DRO considers a minimax game: the inner optimization
objective is to shift the training distribution within a pre-
specified uncertainty set so as to maximize the expected loss
on the test distribution. The outer optimization minimizes
the adversarial expected loss. The uncertainty set defined by
an f -divergence ball (such as Kullback-Leibler divergence)
from the training distribution has been very popular, which
is also known as KL-DRO [20]. However, the convex as-
sumption in KL-DRO usually does not hold in real-world
scenarios, thus leading to the inferior performance in the con-
text of overparameterized neural networks. To this end, we
address the above-mentioned issue and reformulate KL-DRO
to first solve the inner step optimization problem and then
obtain a closed-form expression of the optimal objective. By
doing this, the proposed Unit-DRO avoids the troublesome
bi-level optimization in traditional DRO problems and scales
well to overparameterized regimes. Compared to previous
DG-ReID methods, the proposed Unit-DRO is simple yet
effective, which also avoids the need for either meta-learning
pipelines or complicated model structure.

In this paper, we evaluate the proposed Unit-DRO for
person ReID by comparing it with existing DG-ReID meth-
ods. Unit-DRO outperforms recent methods, even including
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those methods using demographics. To better understand the
proposed Unit-DRO, we perform comprehensive ablation
studies on several important components. We also visualize
t-SNE embeddings, and measure the domain divergence and
error set to show the good invariant learning capability of
Unit-DRO. Empirical results show that the proposed Unit-
DRO can effectively retrieve valuable samples or subgroups
without demographics.

2. Method
2.1. Overview

Problem Formulation. Given current DG-ReID setting,
there is a labeled set of training data from several different
domains: P = ∪N

k=1Pk and Pk = {(xi, yi)}Nk
i=1, where N

is the number of domains, Nk is the number of images in
domain Pk, and xi ∈ X , yi ∈ Y indicate an image and its
corresponding label, respectively. During training, we use
all aggregated image-label pairs from P . During testing,
we evaluate the person retrieval performance on the unseen
target domain G without any additional model updating.
Therefore, the goal of DG-ReID is to learn a model fθ :
X → Y that minimizes the error on the target domain G:

min
θ∈Θ

E(x,y)∈G [ℓ(x, y; θ)] , (1)

where ℓ is the predefined loss function. Previous studies
mostly leverage demographics (e.g. domain/camera labels
and video timestamps) to clip the spurious correlations for
more robust models, which is not always available in real-
world applications. Therefore, we consider a more general
setting where the above-mentioned demographic informa-
tion is unknown during training, i.e. DG-ReID without de-
mographics or DGWD-ReID.

Baseline Algorithm. We introduce the objectives used
in our baseline as follows. The first one is the cross-entropy
loss. Given n training points {(x1, y1), ..., (xn, yn)}, we
then have the loss for person identity classification: Lce =
1
n

∑n
i=1 ℓ(xi, yi; θ), where ℓ indicates the cross-entropy loss

function. Label-smoothing is also applied to prevent the
model from overfitting to the identity labels. Inspired by
recent ReID methods, we further introduce triplet loss to
enhance the intra-class compactness and inter-class separa-
bility in the embedding space. Given an anchor sample xa

i ,
we then evaluate triplet loss using the hardest positive and
negative samples, xp

i and xn
i :

Ltr(x
a
i , x

p
i , x

n
i ; θ) = max {d(xa

i , x
p
i ; θ)− d(xa

i , x
n
i ; θ) +m, 0} ,

(2)
where d(·, ·) indicates a pairwise distance such as the nor-

malized Euclidean distance, and m is the margin between
positive and negative pairs. Similar to [34], we use a BN-
Neck structure to maximize the synergy between Lce and
Ltr. We also integrate a mixture of batch normalization and
instance normalization with learnable parameters [7], which
has proved to be very useful for DG-ReID.

2.2. Unit-DRO

To address the underlying uncertainty of domain distri-
bution without demographics, we introduce Unit-DRO, a
novel generalization framework that does not require pri-
ors about demographics. We first introduce the basic DRO
framework [5, 42] as follows, where the worst-case expected
risk over a predefined family of distributions Q (termed un-
certainty set) is used to replace the expected risk on the
unseen target distribution G in Equ.(1) and the objective is,

min
θ∈Θ

max
q∈Q

E(x,y)∈q[ℓ(x, y; θ)]. (3)

Specifically, the uncertainty set Q encodes the possible test
distributions that we want our model to perform well on. If
Q contains G, the DRO object can bound the risk under G.

An important question for using DRO is how to choose
the uncertainty set. Note that in real-world applications, we
can obtain only the empirical (training) data distribution.
The uncertainty set can thus be constructed by collecting
the distributions within a certain distance from the train-
ing distribution. For example, previous work may choose a
KL-divergence ball [20]/MMD ball [46] around the training
distribution, which confers robustness to a wide set of distri-
bution shifts. However, it can also lead to overly pessimistic
models which optimize for implausible worst-case distribu-
tions [12]. In other words, Q should be sufficiently large to
contain G, while it may also contain noisy distributions [35].
Group-DRO [43] thus leverages demographics to define the
uncertainty set Q and attains superior OOD performance.
Here we consider a new extension of DRO to improve OOD
generalization without demographics.

KL-DRO. We first introduce the construction of Q based
on the KL-divergence ball around the empirical distribution
P as follows. Given the KL upper bound (radius) η, we
have Q = {Q : KL(Q||P) ≤ η}. The min-max problem
in Equ.(3) can then be reformulated as

min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈Q [ℓ(x, y; θ)] . (4)

Lemma 1 (Modified from Section 2 in [20]) Assume the
model family θ ∈ Θ and Q to be convex and compact. The
loss ℓ is continuous and convex for all x ∈ X , y ∈ Y .
Suppose empirical distribution P has density p(x, y). Then
the inner maximum of Equ.(4) has a closed-form solution

q∗(x, y) =
p(x, y)eℓ(x,y;θ)/τ

∗

EP
[
eℓ(x,y;θ)/τ∗] , (5)

where τ∗ satisfies EP

[
eℓ(x,y;θ)/τ∗

EP [eℓ(x,y;θ)/τ∗
]

(
ℓ(x,y;θ)

τ∗ − log EP [eℓ(x,y;θ)/τ∗
]
)]

=

η and q∗(x, y) is the optimal density of Q. The min-max prob-
lem in Equ.(4) is then equivalent to

min
θ∈Θ,τ>0

τ logEP

[
eℓ(x,y;θ)/τ

]
+ ητ. (6)
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Figure 1. Training statistics.

We refer to Equ.(6) as KL-
DRO. Unfortunately, the con-
vex condition of KL-DRO is
not held for overparameter-
ized neural networks, such
that applying it may fail to
generalize under the distribu-
tion shifts in real-world scenarios. As illustrated in Fig-
ure 1, we compare the training statistics with the baseline,
where KL-DRO is highly unstable and attains inferior results.
Therefore, instead of following KL-DRO to directly use the
inner maximum, we reformulate Equ.(4) as follows.

min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈Q[ℓ(x, y; θ)]

= min
θ∈Θ

max
Q:KL(Q||P)≤η

∫
ℓ(x, y; θ)q(x, y)dxdy

= min
θ∈Θ

max
Q:KL(Q||P)≤η

∫
ℓ(x, y; θ)

q(x, y)

p(x, y)
p(x, y)dxdy

= min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈P

[
q(x, y)

p(x, y)
ℓ(x, y; θ)

]
= min

θ∈Θ
E(x,y)∈P

[
eℓ(x,y;θ)/τ

∗

EP [eℓ(x,y;θ)/τ
∗ ]
ℓ(x, y; θ)

]
.

(7)

Specifically, to obtain the third line, we apply the change-of-
measure technique. The fourth line replaces the inner maxi-
mum by its closed-form solution q∗(x, y) in Equ.(5). Note
that both the value of τ∗ and the normalizer EP [e

ℓ(x,y;θ)/τ∗
]

depend on the expectation of losses over all training data,
which is untrackable. For simplicity, we can serve τ∗ as a
parameter and take the average over mini-batch as an estima-
tor of the normalizer. Therefore, we have the formulation of
vanilla Unit-DRO:

LUnit-DRO(θ, τ
∗) = min

θ∈Θ

1

N

N∑
i=1

(
eℓ(x,y;θ)/τ

∗

1
N

∑N
i=1 (e

ℓ(x,y;θ)/τ∗)
ℓ(x, y; θ)

)
,

(8)
where N is the batch size. However, vanilla Unit-DRO does
not work well in practice, and we address the following two
problems to form a robust Unit-DRO solution.

Multi-Step τ∗. The first problem is that a constant hyper-
parameter τ∗ is usually suboptimal for the whole learning
process. As shown in Figure 2, we visualize the densities
of the weight eℓ(x,y;θ)/τ

∗
/EP [e

ℓ(x,y;θ)/τ∗
] at different op-

timization steps when using a constant τ∗ (please refer to
Section C.3 for the details). Specifically, we find that: 1) a
small τ∗ leads to the high variance on the weight distribution
and is also sensitive to outliers; 2) a large τ∗ is so conser-
vative that the weights for all samples are almost similar.
To this end, we propose a multi-step solution for the hypa-
rameter τ∗, which declines with the training/optimization
steps. The intuition behind the multi-step τ∗ is that: at the
beginning, we use a large τ∗, and the model thus assigns
almost similar weights to all samples and cannot identify
which sample is more important or not. With the increase of

training steps, we decrease the value of τ∗ and improve the
weights for important (i.e. hard-to-distinguish) samples.
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Figure 2. Visualizing the distribution of sample weight at
1k, 5k, 10k, 20k steps, respectively (from left to right). The hori-
zontal axis represents the weight.

Weight Queue M. The second problem is that the ex-
pectation over each mini-batch may not be a good estimator
of the normalizer EP [e

ℓ(x,y;θ)/τ∗
]. To address this prob-

lem, we introduce a queue M = {wi := eℓ(xi,yi;θ)/τ
∗}Mi=1

to maintain the historical weights, where M depends on
the batch size N and determines how well M can estimate
EP [e

ℓ(x,y;θ)/τ∗
]. (see more analysis in Section C.3). Lastly,

we have the objective function of Unit-DRO:

LUnit-DRO(θ, τ
∗(t)) = min

θ∈Θ

1

N

N∑
i=1

(
eℓ(x,y;θ)/τ

∗(t)

1
|M|

∑
wi∈M (wi)

ℓ(x, y; θ)

)
,

(9)
where t is the index of training step and τ∗ is a piecewise

function of t. As shown in Figure 1, the training statistics
of Unit-DRO is more stable than KL-DRO, and it’s perfor-
mance also outperforms baseline methods by a large margin.
Note that in Algorithm 1 of Group-DRO [43], all samples
in the same domain share the same weight, which can be
seen as a special case of the proposed Unit-DRO. Comparing
with Group-DRO, one of the key improvements is the im-
plementation trick that the group weights are updated using
exponential gradient ascent instead of picking the group with
the worst average loss at each step. Specifically, Group-DRO
shows that such an improvement is useful for training stabil-
ity and model convergence but cannot explain why it works.
In contrast, the adaptive weights used in this paper are inter-
pretable: the optimal distribution of DRO with KL constraint
is proportional to the empirical distribution composite with
the exponential term eℓ(x,y;θ)/τ

∗
.

3. Experiments
In this section, we evaluate the proposed Unit-DRO and

try to answer the following questions: “without demograph-
ics, how does Unit-DRO perform compared to other CD-
ReID and DG-ReID methods? what is the influence of
different hyperparameters in Unit-DRO? why Unit-DRO
improves the baseline?”. To answer the first question, we
compare Unit-DRO with baseline methods on both DG-ReID
and CD-ReID benchmarks. We then perform detailed abla-
tion studies to answer the second question. Comprehensive
analyses are conducted for the third question, e.g. error set
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Protocol (i) mAP Rank-1 Protocol (ii) mAP Rank-1
SNR 54.3 48.48 RaMoE 31.2 32.4
Ours 58.84 52.7 Ours 41.7 40.4

Protocol (iii) mAP Rank-1 Protocol (iv) mAP Rank-1
M3L 26.7 27.9 RaMoE 68.8 58.9
Ours 27.8 29.1 Ours 73.2 65.4

Table 1. Comparison with SOTA DG-ReID methods under different
evaluation protocols, where the Duke is removed from source and
target domains. The best accuracy is highlighted by bold.

Method MMD↓ (U) MMD↓ (T) MMD↓ (A) A ↓ (U) A ↓ (T) A ↓ (A)
DualNorm 0.52 0.21 0.41 1.96 1.91 1.88
MetaBIN 0.41 0.19 0.36 1.96 1.89 1.86
Unit-DRO 0.41 0.19 0.35 1.95 1.89 1.85

Table 2. Divergence measurement on four unseen datasets (U), five
training datasets (T) and all of these datasets (A).

analysis, feature visualization, and domain divergence mea-
sure. For space limit, we place the full experimental results
in the appendix C and leave part of generalization results
and analysis in the main manuscript.

Experimental Setup. Following previous DG-ReID
methods, we use MobileNetV2 [44] with the width mul-
tiplier of 1.4 as the backbone network, which is initialized
using the weights pretrained on ImageNet [11]. All training
images are resized to 256 × 128 pixels and the batch size
is N = 80. We use the SGD optimizer with a momentum
0.9 and the weight decay 5e − 4. The learning rate starts
from 0.01 and then decays to its 0.1× at 40 and 70 epochs.
We also use a warmup learning rate schedule at the first
10 epochs. We initialize the multi-step τ∗ with τ∗ = 100,
which is then decayed to 20 and 5 at 40 and 70 epochs, re-
spectively. The default size of the weight queue is M = 800.

DG-ReID Protocols. We compare Unit-DRO with other
methods using the following protocols: (1) one-to-multiple
setting [23]; (2) multiple-to-one setting [9]; (3) multiple-to-
one setting [62]; and (4) multiple-to-multiple setting [23].
Due to the page limit, please see the results in Appendix.
Besides, due to privacy issue, the Duke dataset is not ap-
propriate for using. We thus conduct experiments under
different evaluation protocols but remove the Duke from
source/target domains, and Table 1 shows that the perfor-
mance margin between Unit-DRO and other baselines be-
comes larger. Because these protocols are used in different
DG-ReID papers, we choose the SOTA method under every
protocol for comparison.

Ablation Studies. We conduct ablation studies on differ-
ent Unit-DRO components, including the multi-step τ∗ and
the weight queue. Results in Tab. 3 verify the importance of
both of these two components.

Domain Divergence Analysis. We explore MMD dis-
tance [51] and A-distance [32] as the measure of domain
discrepancy [4]. Table 2 shows that Unit-DRO can learn com-

τ∗ = 10 τ∗ = 20 |M| = 800 |M| = 5000 Multi-Step τ∗ R-1 mAP
✓ 63.5 71.8

✓ 63.6 71.5
✓ ✓ 64.1 72.0

✓ ✓ 63.5 71.2
✓ 63.8 72.2

✓ ✓ 63.9 71.8
✓ ✓ 65.4 72.8

Table 3. Ablation studies on different Unit-DRO components.

(a) DualNorm [22] (b) MetaBIN [7] (c) Unit-DRO

Figure 3. Visualization of the embeddings on training and test
datasets. Query and gallery samples of these unseen datasets are
shown using different types of mark. Best viewed in color.

parable or even more invariant representations compared to
MetaBIN, which outperforms DualNorm by a large margin.
With t-SNE visualization, the superior of Unit-DROis veri-
fied again and representations inFigure 3c are more invariant.

Refer to Appendix B for discussions about DG, DG ReID,
DRO and related works.

4. Conclusion
Traditional DG-ReID methods fail to work in the cases

where domain information are not available due to the secu-
rity and privacy issues. To this end, we introduce DGWD-
ReID, a more general setting that requires the model to learn
domain-invariant representations without demographics. To
address this problem, we propose Unit-DRO, which is a sim-
ple yet effective algorithm that substantially improves the
model generalization performance without requiring expen-
sive demographics during training. Extensive experimental
results demonstrate that the proposed Unit-DRO not only
achieves comparable or better performance comparing with
other DG-ReID methods using the demographic information,
but also can be used for other DG applications.

Different from typical image classification tasks, where
domains are partitioned by image styles, person ReID datasets
have more fine-grained variation factors, e.g. the image styles
of different datasets, camera perspective changes within one
dataset, and the shooting conditions at different times on the
same camera. We believe that simply specifying each dataset
as a separate domain is suboptimal and a better domain infer-
ence method that considers the above variation factors will be
the subject of future study.
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