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Yuting Yang

Licheng Jiao
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• Team website URL:

None

• Affiliation:

School of Artificial Intelligence, Xidian University, Xi’an, China

• User names on the OOD-CV Codalab competitions:

ZK

• Link to the codes of the solution(s):

https://pan.quark.cn/s/a51e565feef2

2 Contribution details

• Title of the contribution :

1st Place Solution for ICCV 2023 Classification Track - Self-supervised

pretrain leaderboard

• General method description:

In our solution, we employed EVA and ConvNeXtV2 as baseline mod-

els. We enriched the training data with diverse data augmentation

methods for six types of out-of-distribution variations, including pose,

shape, texture, context, weather, and occlusion. These methods in-
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volved mask-level copy-paste, resizing, angle rotation, noise injection,

blur, weather simulation, and more.

Initially, we separately utilized two self-supervised pre-trained models,

EVA and FCMAE. Subsequently, we fine-tuned the networks with the

augmented data. In the next stage, we further trained the models using

the improved semi-supervised method, UDA. Throughout the training

process, we adhered to the principle of training based on the best con-

vergence to guide the models towards better performance.Finally, we

fused the outputs of various models using an optimal consistency-based

dynamic fusion approach, resulting in the best submission results.

• Description of the particularities of the solutions deployed for

each of the tracks :

Due to the issue of out-of-distribution shifts in the data, we first sim-

ulated these six variations (data augmentation) to enrich the training

set. In order to enhance the model’s generalization and robustness, we

incorporated the semi-supervised method UDA into the model for train-

ing. We also replaced the cross-entropy loss with label smoothing loss

(to enable the model to generalize better to unseen samples and facili-

tate smoother learning of decision boundaries between classes, thereby

improving performance).
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• Representative image / diagram of the method(s):

Figure 1: The pipeline of our proposed method.

3 Global Method Description

[* Indicates method used in competition test results.]
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• Total method complexity:

Model Flops (G)

EVA-large 236.10

ConvNeXt V2-tiny 76.47

ConvNeXt V2-base 160.38

Table 1: Total method complexity

• Model Parameters:

Model Params (M )

EVA-large 536.53

ConvNeXt V2-tiny 142.64

ConvNeXt V2-base 312.55

Table 2: Model Parameters

• Run Time:

Model Time

EVA-large 56 hours × 4 GPUs

ConvNeXt V2-tiny 16 hours × 4 GPUs

ConvNeXt V2-base 38 hours × 4 GPUs

Table 3: Trainingt Time

• Which pre-trained or external methods / models have been

used:
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Model Pre-trained model

EVA(Exploring the Limits of Masked

Visual Representation Learning at Scale)
EVA

ConvNeXt V2(Co-designing and Scaling

ConvNets with Masked Autoencoders)
FCMAE

Table 4: Pre-trained models

• Training description:

Baseline model

We chose two models as the baseline model :

1) EVA: A billion parameters vanilla ViT encoder to explore the limits

of masked visual representation learning.

2) ConvNeXt V2: it is specifically designed to be more suitable for self-

supervised learning. Using the fully convolutional masked autoencoder

pre-training, convnext v2 can significantly improve the performance of

pure ConvNets across various downstream tasks.

Training Process

1) We applied extensive data augmentation to the model, enlarging the

original training dataset by a factor of 10. Techniques such as mask-

level copy-paste, resizing, angle rotation, introducing noise, blurring,

and simulating various weather conditions were employed to emulate

the distribution shift seen in the test set. Additionally, we also utilized

two common data augmentation strategies, mixup and CutMix.

2) We employed the powerful pre-trained models, EVA and Convnext
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v2, separately. When training with the augmented training data, due to

the unique data distribution, we opted to fine-tune all layers. Although

this extended the training time, it yielded superior results. Moreover,

given the instability and randomness inherent in the training process,

we imposed constraints on the model training following the principle

of achieving the best convergence. The approach in the code was as

follows: if the model’s performance on the validation set did not im-

prove or even declined continuously for three consecutive epochs, the

training would be restarted from the epoch with the highest previously

saved validation score.

3) Due to the limited amount of training data and the distribution shift,

we incorporated the semi-supervised UDA (Unsupervised Data Aug-

mentation for Consistency Training) method into the model’s training.

The idea of UDA is to utilize both unlabeled and labeled data, employ-

ing data augmentation and consistency loss during model training to

enhance the model’s generalization performance. We also replaced the

cross-entropy loss with label smooth loss, a method that proved to be

highly effective in enhancing the performance on the test set.

Implementation details: ConvNeXt v2-base is trained with 4 GPUs

and 16 samples per GPU. (EVA-large is trained with 4 GPUs and 16

samples per GPU. ConvNeXt v2-tiny is trained with 4 GPUs and 32

samples per GPU.) We use the AdamW optimizer . The learning rate is

adjusted according to the cosine decaying policy and the initial learning

rate is set to1e-3. The warm-up strategy is applied over the first 20

epochs, gradually increasing the learning rate linearly from 1e-5 to the
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initial value of the cosine schedule. The model is trained for 300 epochs.

We set β=0.6 and τ=0.4 for UDA.

• Testing description:

Implementation details: ConvNeXt v2-base(EVA-large, ConvNeXt v2-

tiny) were tested with 2 GPUs and 32 samples per GPU.

• Quantitative and qualitative advantages of the proposed solu-

tion :

Figure 2: (a) t-SNE (EVA-large) (b) t-SNE (ConvNeXt V2-tiny) (c) t-SNE

(ConvNeXt V2-base) Different models’ t-SNE visualization results on the

validation set. The ConvNeXt V2 model demonstrates a better ability to

distinguish between these ten classes. Additionally, ConvNeXt V2 is more

effectively trained, yielding better results with the same resources. This

suggests that after incorporating semi-supervised training, the ConvNeXt

V2 model can adapt more effectively to data shifts.
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Methods shape pose context texture occlusion weather

EVA(large) 85.33 89.46 83.52 91.21 82.37 88.25

EVA(large)+DA 90.72 92.25 90.56 94.66 91.28 91.20

EVA(large)+DA

+UDA
94.32 97.05 97.78 98.86 97.28 96.04

ConvNeXt V2(tiny)

+DA
89.56 91.32 90.23 94.45 91.36 90.89

ConvNeXt V2(tiny)

+DA+UDA
93.83 96.93 97.16 97.73 97.56 96.62

ConvNeXt V2(base)

+DA
91.08 92.86 91.32 95.16 92.42 91.44

ConvNeXt V2(base)

+DA+UDA
95.58 98.24 98.72 98.67 98.63 96.72

Table 5: Ablation Experiments on the Validation Set, where ”DA” represents

data augmentation, and ”UDA” represents semi-supervised training. After intro-

ducing data augmentation, the model’s performance has improved across various

offset categories, especially in terms of content and occlusion. Additionally, the

use of semi-supervised training methods has enabled the model to better adapt to

data distribution shifts.

• Results of the comparison to other approaches (if any) :

None

• Novelty of the solution and if it has been previously published:

We incorporate a semi-supervised approach (UDA) into the model
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training process, further alleviating data distribution shifts and en-

hancing the model’s robustness.

4 Ensembles and fusion strategies

• Describe in detail the use of ensembles and/or fusion strate-

gies (if any).:

We designed an optimal consistency dynamic fusion method to select

the best model for fusion. For the test set images, a portion of them

is chosen for data augmentation in batches. From these batches, the

models that exhibit the best consistency (where predictions remain

consistent for samples generated from the same data augmentation)

are selected for fusion.

• What was the benefit over the single method? :

We fused the best model among three baseline models, which can en-

hance the performance on the test set. By combining information from

different models, the more models we fuse, the better the results be-

come.

• What were the baseline and the fused methods? :

We fused one model from EVA-large and two models from ConvNeXt v2

tiny, along with two models from ConvNeXt v2 base. After ensemble,

the OOD accuracy improved from 91.24% to 91.76%.
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5 Technical details

• Language and implementation details (including platform,

memory, parallelization requirements) :

Python , PyTorch , 4 × V100 GPUs.

Our codes built on the MMPretrain platform, easy integration and

transferability with other tasks within the OpenMMLab ecosystem,

not limited to image classification tasks.

• Human effort required for implementation, training and vali-

dation?:

None

• Training/testing time? Runtime at test per image :

Methods Training Time Testing Time
Runtime at test

per image

EVA(large) 56hours × 4GPUs 32min 0.113s

ConvNeXt V2(tiny) 16hours × 4GPUs 12min 0.042s

ConvNeXt V2(base) 38hours × 4GPUs 20min 0.071s

Table 6: Training, testing time and runtime at test per image

• Comment the efficiency of the proposed solution(s)? : The

primary model is ConvNeXt v2, which is relatively resource-friendly

compared to other models.
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6 Other details

• General comments and impressions of the OOD-CV challenge. :

Thanks to the organizers of the OOD-CV challenge

• Other comments: None.
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